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Here, we test Neutral models against the evolution of English word frequency and vocabulary at
the corpus scale, as recorded in annual word frequencies from three centuries of English lan-

guage books. Against these data, we test both static and dynamic predictions of two neutral

models, including the relation between corpus size and vocabulary size, frequency distributions,

and turnover within those frequency distributions. Although a commonly used Neutral model
fails to replicate all these emergent properties at once, we ¯nd that modi¯ed two-stage Neutral

model does replicate the static and dynamic properties of the corpus data. This two-stage model

is meant to represent a relatively small corpus of English books, analogous to a `canon', sampled

by an exponentially increasing corpus of books among the wider population of authors. More
broadly, this model��� a smaller neutral model within a larger neutral model��� could represent

more broadly those situations where mass attention is focused on a small subset of the cultural

variants.
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1. Introduction

English has evolved continually over the centuries, in the branching o® from ante-

cedent languages in Indo-European prehistory [31, 36], in the rates of regularization

of verbs [31] and in the waxing and waning in the popularity of individual words [3,

13, 34]. At a much ¯ner scale of time and population, languages change through

modi¯cations and errors in the learning process [14, 27].

This continual change and diversity contrasts with the simplicity and consistency

of Zipf's law, by which the frequency a word, f, is inversely proportional to its rank

k, as f � k�� and Heaps law, by which vocabulary size scales sub-linearly with

total number of words, across diverse textual and spoken samples [30, 38, 44, 47, 15,

21, 46, 40].

The Google Ngram corpus [34] provides new support for these statistical regu-

larities in word frequency dynamics at timescales from decades to centuries [22, 38,

40, 1, 28]. With annual counts of n-grams ��� an n-gram being n consecutive char-

acter strings, separated by spaces ��� derived from millions of books over multiple

centuries [32], the n-gram data now covers English books from the year 1500 to

year 2008.

Further research on common words and phrases made possible by the n-gram

data demonstrates the \Matthew e®ect" of stochastic proportional growth, which

has been observed in a range of natural, biological and socio-cultural realms [39]. In

English, the Zipf's law in the n-gram data [38] exhibits two regimes: one among

words with frequencies above about 0:01% (Zipf's exponent � � 1) and another

(� � 1:4) among words with frequency below 0:0001% [40]. The latter Zipf's

law exponent � of 1.4 is equivalent to a probability distribution function (PDF)

exponent, �, of about 1.7 (� ¼ 1þ 1=�).

While the well-known Zipf's law demonstrates a necessary but incomplete

characterization of stochastic proportional growth, a more complete characteri-

zation requires analyzing change in time-resolved data [39]. In this respect, word

frequency data have at least two other statistical properties. One, known as Heaps

law, refers to the way that vocabulary size scales sub-linearly with corpus size (raw

word count). The n-gram data show Heaps law in that, if Nt is corpus size and vt is

vocabulary size at time t, then vt � N �
t , with � � 0:5, for all English words in the

corpus [40]. If the n-gram corpus is truncated by a minimum word count, then as

that minimum is raised the Heaps scaling exponent increases from � < 0:5,

approaching � < 1 [40].

The other statistical property is dynamic turnover in the ranked list of most

commonly used words. This can be measured in terms of how many words are

replaced through time on \Top y" ranked lists of di®erent sizes y of most frequently-

used words [12, 17, 19, 23]. We can de¯ne this turnover zyðtÞ as the number of new

words to have entered the top y most common words in year t, which is equivalent to

the the top y in that year. The plotting of turnover zy for di®erent list sizes y can

therefore be useful in characterizing turnover dynamics [2].
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Many functional or network models readily yield the static Zipf distribution [21,

15, 39] and Heaps law [33], but not the dynamic aspects such as turnover. Here, we

focus on how Heaps law and Zipf's law can be modeled together with continual

turnover of words within the rankings by frequency [4, 23]. We focus on the 1-grams

in Google's English 2012 data set, which samples English language books published

in any country [25].

Our overall ¯nding is a model that can replicate observed the Google corpus,

which we assume to be representative of overall language through time. Even if the

Google sample is biased toward more recent texts [16], the model reveals its utility in

replicating multiple dynamic properties, including growing corpus and vocabulary

sizes, frequency distributions, and turnover within those frequency distributions.

2. Neutral Models of Vocabulary Change

One promising, parsimonious approach incorporates the class of neutral evolutionary

models [11, 12, 7, 24, 35] that are now proving insightful for language transmission

[13, 10, 43]. The null hypothesis of a Neutral model is that copying is undirected,

without biases or di®erent `¯tnesses' of the words being replicated [2, 29].

A basic neutral model, which we will call the full-sampling Neutral model (FNM),

would assume simply that authors choose to write words by copying those published

in the past and occasionally inventing or introducing new words. As shown in

Fig. 1(a), the FNM represents each word choice by an author as selecting at random

among the Nt words that were published in the previous year [43, 10]. This copying

occurs with probability 1� �, where � � 1 is the ¯xed, dimensionless probability

that an author invents a new word (even if the word had originated somewhere

`outside' books, e.g., in spoken slang). Each newly-invented word enters with fre-

quency one, regardless of Nt. In terms of the modeled corpus, a total of about �Nt

unique new words are invented per time step. Note that Nt represents the total

number of written words, or corpus size, for year t, which contrasts with the smaller

\vocabulary" size, vt, de¯ned as the number of di®erent words in each year t re-

gardless of their frequency of usage (these terms, which we use for generality, are

equivalent to token and type in corpus linguistics, where token is the number of words

in the corpus and type is the number of unique words).

As has been well demonstrated, the FNM readily yields Zipf's law [11, 9, 45],

which can also be shown analytically (see Appendix A). Also, simulations of the

FNM show that the resulting Zipf distribution undergoes dynamic turnover [12].

Extensive simulations [19] show that when list size y is small compared to the

corpus (0:15y < Nt�), this neutral turnover zy per time step is more precisely

approximated by

zy ¼ 1:4 � �0:55 � y0:86 � n0:13; ð1Þ

where n is the number of words per time interval.

Role of Neutral Evolution in Word Turnover During Centuries of English Word Popularity
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This prediction can be visualized by plotting the measured turnover zy for

di®erent list sizes y. The FNM predicts the results to follow zy / y0:86, such that

departures from this expected curve can be identi¯ed to indicate biases such as

conformity or anti-conformity [2]. It would appear from Eq. (1) that turnover

should increase with corpus size. This is the nominal equilibrium for FNM with

constant Nt. If corpus size Nt in the FNM is growing exponentially with time,

however, then there may be no such nominal equilibrium. In this case, we predict

that the turnover zy can actually decrease with time as Nt increases. This is

because newly invented words start with frequency one, and under the neutral

model they must essentially make a stochastic walk into the top 100, say. As Nt

grows, so does the minimum frequency needed to break into the top 100. As the

\bar" is raised, words are more likely to `die' before they ever reach the bar by

stochastic walk [41]. As a result, turnover in the Top y can slow down over time

and growth of Nt.

The FNM does not, however, readily yield Heaps law (vt ¼ N �
t , where � < 1), for

which � � 0:5 among the 1-gram data for English [40]. In the FNM, the expected

exponent � is 1.0, as the number of di®erent variants (vocabulary) normally scales

linearly with �Nt [11].

(a) (b)

Fig. 1. (Color online) Schematic representation of the FNM model and PNM model. (a) In the FNM,

each of the Nt words in year t, represented by di®erent colored circles in each box, is copied (arrows) from

the previous year t� 1 with probability 1� �, or newly-invented with probability �. The FNM shown in
(a) has a corpus size Nt that grows through time. In (b) the PNM samples from all previous results of the

FNM since the initial time step representing year 1700. The PNM corpus grows exponentially (N0e
0:021t)

through time, from 3000 to 1.5 million. As the PNM samples from all previous years of FNM corpus, the

PNM samples from a corpus that increases linearly (by 10,000 words per year) from 10,000 words in year
1700 to 3 million words by year 2000. For the PNM, the big blue arrows represent how each generation can

sample any year of the canon randomly, all the way back to 1700, the smaller arrows representing

individual sampling events.
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While the FNM has been a powerful null model, in the case of books, we can make

a notable improvement to account for the fact that most published material goes

unnoticed while a relatively small portion of the corpus is highly visible. To name a

few examples across the centuries, literally billions of copies of the Bible and the

works of Shakespeare have been read since the 17th century, as well as tens or

hundreds of millions of copies of works by Voltaire, Swift, Austen, Dickens, Tolkien,

Fleming, Rawling and so on. While these and hundreds more books become con-

sidered part of the \Western Canon," that canon is constantly evolving [28] and

many books that were enormously popular in their time ��� e.g. Arabian Nights or

the works of Fanny Burney ��� fall out of favor. As the published corpus has grown

exponentially over the centuries, early authors were more able to sample the full

range of historically published works, whereas contemporary authors sample from an

increasingly small and more recent fraction of the corpus, simply due to its expo-

nential expansion [28, 37].

As a simple way of capturing this, we propose a modi¯ed neutral model, called the

partial-sampling Neutral model (PNM), of an evolving \canon" that is sampled by an

exponentially-growing corpus of books. As shown in Fig. 1(b), the PNM represents

an exponentially growing number of books that sample words from a ¯xed size canon

over all previous years since 1700. Our PNM represents a world where there exists an

evolving canonical literature as a relatively small subset of the world's books on

which all writers are educated. As new contributions to the canon are contributed,

authors sample from the recent generation of writers with occasional innovation.

Because the canon is a high-visibility subset of all books, only a ¯xed, constant

number words of text per year are allowed into a year's canon. The rest of the

population learns from the cumulative canon since our chosen reference year of 1700.

3. Results

The average result from 100 runs in each of the FNM and PNM were used to match

summary statistics with the 1-gram data. Several key statistical results emerge from

analysis of the 1-gram data which we compare the FNM to the PNM in terms of these

results: (1) Heaps law, which is the sublinear scaling of vocabulary size with corpus

size, (2) a Zipf's law frequency distribution for unique words, (3) a rate of turnover

that decreases exponentially with time and a turnover versus popular list size that is

approximately linear. Here, we describe our results in terms of rank-frequency dis-

tributions, turnover and corpus and vocabulary size. We compare the PNM model to

the full 1-gram data for English.

First, we check that the model replicates the Zipf's law that characterizes the

1-gram frequencies in multiple languages [38]. Our own maximum likelihood deter-

minations, applying available code [15] to the Google 1-gram data, con¯rm that the

mean � ¼ 1:75� 0:12 for the Zipf's law over all English words in the 100 years from

1700 to 1800 (beyond 1800, the corpus size becomes too large for our computation).

Normalizing by the word count [21], the form of the Zipf distribution is virtually

Role of Neutral Evolution in Word Turnover During Centuries of English Word Popularity
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identical for each year of the dataset, reaching eight orders of magnitude by the year

2000 (Fig. 2(a)). The FNM replicates the Zipf (Fig. 2(b)) but the PNM replicates it

better and over more orders of magnitude (Fig. 2(c)). It was not computationally

possible with either the FNM or PNM to replicate the Zipf across all nine orders of

magnitude, as the modeled corpus size Nt grows exponentially (Fig. 2(d)).

Figure 3(a) illustrates the relationship between corpus size and vocabulary size in

our partial-sampling Neutral model. Due to the exponentially increasing sample size,

the ratio of vocabulary size over corpus size becomes increasingly small, thus

the model gives us the sub-linear relationship described by vt ¼ N �
t , where � < 1.

On the double-logarithmic plot in Fig. 3(a), the Heaps law exponent is equivalent to

the slope of the data series. The PNMmatches the 1-gram data with Heaps exponent

(slope) of about 0.5, whereas the FNM, with exponent about 1.0, does not. Figure 3(b)

shows how 100 runs of the PNM yields a Heaps law exponent within the range

derived by [40] for several di®erent n-grams corpora (all English, English ¯ction,

(a) (b)

(c) (d)

Fig. 2. (Color online) Rank-frequency distributions among English words, (a) In the 1-gram corpus.

Black symbols show the distribution for the year 1800, blue shows year 1900 and red shows year 2000. The

simulated results are shown for the FNM in (b) and the PNM in (c). Panel (d) shows the actual number of
English words,Nt in the 1-gram corpus versus the modeled corpus sizeN0e

0:021t, where t is number of years

since 1700.
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English GB, English US and English 1M). The PNM yields Heaps law exponent

� � 0:52� 0:006, within the range of English corpora, whereas the FNM yields a

mismatch with the data of � � 1� 0:002 (Fig. 3(b)).

In Fig. 3(a), there is a constant o®set on the y-axis between vocabulary size in the

PNM (� ¼ 0:02;N ¼ 10; 000) versus the 1-gram data. Both data series follow Heaps

exponent b � 0:5, but the coe±cient, A, is several times larger for the 1-gram data

than for the PNM. We do not think this is due to our choice of canon size N in the

PNM, because if we halve it to 5000, the resulting A does not signi¯cantly change.

The di®erence could be resolved, however, with larger exponential growth in PNM

corpus size, St, over the 300 time steps. Computationally, we could only model the

PNM with growth exponent � ¼ 0:02 ��� using � ¼ 0:03, as would ¯t the actual

growth of the n-gram corpus over 300 years [8], makes the PNM too large to com-

pute. Nevertheless, we can roughly estimate the e®ect; when we reduce � from 0.02 to

0.01, while keeping N ¼ 10; 000, we ¯nd that A averaged over one hundred PNM

runs is reduced from 6:3� 0:5 to 1:4� 0:3. Given an exponential relationship, in-

creasing alpha to 0.03 would increase A to about 20, which is within the magnitude of

o®set we see in Fig. 3(a). Of course, this question can be resolved precisely when the

much larger PNM can be simulated.

Regarding dynamic turnover, we consider turnover in ranked lists of size y,

varying the list size y from the top 1000 most common words down to the top 10 (the

top word has been \the" since before the year 1700). We measure turnover in the

word-frequency rankings by determining the top y rankings independently for each

year, and then counting the number of new words to appear on the list from one year

to the next. Figure 4 shows the number of 1-grams to drop out of the top 1000, top

500 and top 200 per year in the 1-gram data. Annual turnover among the top 1000

(a) (b)

Fig. 3. (Color online) Heaps law in simulated Neutral models versus 1-gram data. (a) A double-loga-

rithmic plot, showing corpus size versus vocabulary size, i.e., Heaps Law, for all 1-grams (black), the FNM

(blue) and the PNM (red). (b) The Heaps law exponents, �, for the data series on the left, as well as

additional data series, using Table 1 in [40]: all English 1-grams: 0:54� 0:01; English ¯ction: 0:49� 0:01;
English GB: 0:44� 0:01; English US: 0:51� 0:01. The 100 independent runs of each neutral model, using

parameters listed in the text, yielded � ¼ 0:52� 0:07 for the PNM, and � ¼ 1:00� 0:002 for the FNM (not

shown).

Role of Neutral Evolution in Word Turnover During Centuries of English Word Popularity
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and the top 500 decreased exponentially from the year 1700 to 2000, proportional to

e�0:012t (r2 > 0:91 for both), where t is years since 1700. This exponential decay

equates to roughly a halving of turnover per century.

Since the corpus size was increasing with time, Fig. 4 e®ectively also shows how

turnover in top y list decreases as corpus size increases in the partial-sampling

Neutral model. The exponential decay in turnover in the partial-sampling Neutral

model is markedly di®erent than the base Neutral model, in which turnover would be

growing as corpus size grew, due to term n0:013
s in Eq. (1).

Finally, we also look at the \turnover pro¯le", plotting list size y versus turnover

zy for di®erent time slices (Fig. 5). For all words, zy / y1:26 for di®erent time periods

(Fig. 5). We can then compare the turnover pro¯le for the 1-grams to the prediction

from Eq. (1) that turnover will be proportional to y0:86, as shown in Fig. 5(b).

Table 1 lays out the speci¯c predictions of each of the models and how they fare

against empirical data. Bands indicate 95% range of simulated values. While the

predictions for the FNM and PNM are similar for y ¼ 50 and for the year 1800

(a) (b)

(c)

Fig. 4. (Color online) Turnover decay in neutral model versus 1-gram data, for di®erent toplist sizes.

Each panel shows the annual turnover among the ranked lists of the top y most frequently-used 1-grams,

for list sizes of (a) y ¼ 50, (b) y ¼ 100 and (c) y ¼ 200. The respective line and error bars in each color
represent the range of FNM and PNM simulation results. Bands indicate 95% range of simulated values.
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(Figs. 4(a) and 5(a)), they do di®er substantially in their predictions for Zipf's law

and Heaps law under list size y ¼ 200 and for the year 2000 (Figs. 4(c) and 5(c)).

Although the FNM can ¯t Zipf's Law with the right parameters, it cannot also ¯t

Heaps law or the turnover patterns at the same time as matching Zipf's Law. In

contrast, the PNM can ¯t Zipf's law, Heaps law exponent (Fig. 3(a)), and the 2000

series in Fig. 4 (but starts to breakdown at y > 150). Neither the FNM nor the PNM

does very well at y ¼ 200.

(a) (b)

(c)

Fig. 5. Turnover pro¯les in 1-gram data and in simulated results, for (a) the year 1800, (b) the year 1900

and (c) the year 2000. In each panel, the circles show turnover z in 1-grams versus list size y, averaged over
the decade from ¯ve years before the new century to ¯ve years after. For the FNM, the corpus size, Nt, is

1.5 million by year 2000. For the PNM, the sample St grows exponentially as S0e
�t and the sampled canon

size, Nt, grows linearly at 10,000 words per year, reaching 3 million by year 2000 (t ¼ 301). For the FNM

and the PNM, bands indicate 95% range of simulated values.

Table 1. Seven predictions of the FNM and model PNM and how they fare against 1-gram data.

Model

Zipf's

law

Heaps

exponent

Heaps

coe±cient

Turnover

y ¼ 50

Turnover

y ¼ 200

z versus y

yr 1800

z versus y

yr 2000

FNM Yes/No No No Yes No Yes No
PNM Yes Yes No Yes Yes? Yes Yes

Role of Neutral Evolution in Word Turnover During Centuries of English Word Popularity
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4. Discussion

We have explored how `neutral' models of word choice could replicate a series of

static and dynamic observations from a historical 1-gram corpora: corpus size, fre-

quency distributions, and turnover within those frequency distributions. Our goal

was to capture two static and three dynamic properties of word frequency statistics

in one model. The static properties are not only the well-known (a) Zipf's law, which

a range of proportionate-advantage models can replicate, but also (b) Heaps law.

The dynamic properties are (c) the continual turnover in words ranked by popu-

larity, (d) the decline in that turnover rate through time, and (e) the relationship

between list size and turnover, which we call the turnover pro¯le.

We found that, although the FNM model predicts the Zipf's law in ranked word

frequencies, the FNM does not replicate Heaps law between corpus and vocabulary

size, or the concavity in the non-linear relationship between list size y and turnover

zy, or the slowing of this turnover through time among English words.

It is notable that we found it impossible to capture all ¯ve of these properties at

once with the FNM. It was a bit like trying to juggle ¯ve balls, as soon as the FNM

could replicate some of those properties, it dropped the others. Having explored the

FNM under broad range of under a range of parameter combinations, we ultimately

determined that it could never replicate all these properties at once. This is mainly

because both vocabulary size in the FNM is proportional to corpus size (rather than

roughly the square root of corpus size as in Heaps law) and also because turnover in

FNM should increase slightly with growing corpus, not decrease as we see in the

1-gram data over 300 years. Other hypotheses to modify the FNM, such as introducing

a conformity bias [2], can also be ruled out. In the case of conformity bias ��� where

agents choose high-frequency words with even greater probability than just in pro-

portion to frequency ��� both the Zipf law and turnover deteriorate under strong

conformity in ways that mis-match with the data.

What did ultimately work very well was our partial-sampling Neutral model, or

PNM (Fig. 1(b)), which models a growing sample from a ¯xed-sized FNM. Our

PNM, which takes exponentially increasing sample sizes from a neutrally evolved

latent corpus, replicated the Zipf's law, Heaps law, and turnover patterns in the

1-gram data. Although it did not replicate exactly the particular 1-gram corpus we

used here, the Heaps law exponent yielded by the PNM does fall within the range ���
from 0.44 to 0.54 ��� observed in di®erent English 1-gram corpora [40]. Among all

features we attempted to replicate, the one mismatch between PNM and the 1-gram

data is that the PNM yielded an order of magnitude fewer vocabulary words for a

given corpus size, while increasing with corpus size according to the same Heaps law

exponent. The reason for this mismatch appears to be a computational constraint:

we could not run the PNM with exponential growth quite as large as that of the

actual 300 years of exponential growth in the real English corpus.

As a heuristic device, we consider the ¯xed-size FNM to represent a canonical

literature, while the growing sample represents the real world of exponentially

D. Ruck et al.
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growing numbers of books published ever year in English. Of course, the world is not

as simple as our model; there is no o±cial ¯xed canon, that canon does not strictly

copy words from the previous year only and there are plenty of words being invented

that occur outside this canon. Also, the Google dataset is an imperfect sample of the

language for earlier years. At least some of the growth observed over time is due to

greater availability and easier digitization of later texts, such that the Google corpus

grows faster than the language itself over the years [16].

This does not change our overall result, however, in the PNM can replicate dy-

namic properties observed in an exponentially-growing corpus (even if that exponent

were smaller) that the FNM cannot. In particular, our canonical model of the PNM

di®ers from the explanation by [40], in which a \decreasing marginal need for ad-

ditional words" as the corpus grows is underlain by the \dependency network be-

tween the common words . . . and their more esoteric counterparts." In our PNM

representation, there is no network structure between words at all, such as \inter-

word statistical dependencies" [42] or grammar as a hierarchical network structure

between words [20].

5. Conclusion

Since the PNM performed quite well in replicating multiple static and dynamic

statistical properties of 1-grams simultaneously, which the FNM could not do, we

¯nd two insights. The ¯rst is that the FNM remains a powerful representation of

word usage dynamics [13, 43, 26, 24, 9, 5], but it may need to be embedded in a larger

sampling process in order to represent a very large data sample. Case studies where

the PNM succeeds and the FNM fails could represent situations where mass atten-

tion is focused on a small subset of the cultural variants. The same idea seems

appropriate for a digital world, where many cultural choices are pre-sorted in ranked

lists [24]. In the present century, published books contain only a few percent of the

verbiage recorded online, with the volume of digital data doubling about every three

years. Centuries of prior evolution in published English word use provides valuable

context for future study of this digital transition.

6. Models and Data

Our aim is to compare key summary statistics from simulated data generated by the

hypothetical FNM and PNM processes with summary statistics from Google 1-gram

data. See Acknowledgements for data source address and the repository location for

the Python code used to generate the FNM and PNM.

6.1. Neutral models

The FNM assumes words in a corpus at time t are selected at random from the corpus

at time t� 1. The corpus size Nt increases exponentially, N0e
0:021t, through time to

Role of Neutral Evolution in Word Turnover During Centuries of English Word Popularity
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simulate the exponentially increasing corpus size observed in the Google n-grams

data [8]. We ran a genetic algorithm (described in Appendix B) to search the model

state space to obtain parameter combinations ��� latent corpus size Nt, innovation

fraction � and initial corpus sizeN0 ��� that yielded similar summary statistics to the

1-gram data. With the corpus growth exponent ¯xed at 0.021, initial corpus size, N0,

was constrained by computational capacity.

Following the genetic algorithm search, the model was initialized with corpus size

N0 ¼ 3000 and invention fraction � ¼ 0:003. Once steady state was achieved, we

permitted the corpus size in each successive generation to increase at an exponential

growth rate comparable to the average annual growth rate of Google 1-gram data

until it ¯nally reached N300 ¼ 1:5 million by time step t ¼ 301.

At each time t in the FNM, a new set of Nt words enter the modeled corpus. Each

word in the corpus, at time t, is either a copy of a word from the previous generation

of books, with probability 1� �, or else invented as a new word with probability �.

Each of the copied words is selected from vt�1 possible words (the vocabulary in the

previous time step), which follow a discrete Zipf's law distribution with the proba-

bility a word is selected being proportional to the number of copies the word had in

the previous corpus in time step t� 1 [7].

The PNM, represented schematically in Fig. 1, draws an exponentially increasing

sample (with replacement) from a latent neutrally-evolving canon. We designate the

number of words in the sample as St, and the cumulative number of words in the

canon as Nt, which grows by a ¯xed number of words in each time step. This

exponentially increasing sample, S0e
�t, has an initial corpus size S0 ¼ 3000, growth

exponent � ¼ 0:021, yielding a ¯nal sample size S300 ¼ 1:5 million, matching the

FNM. The latent corpus evolves by the rules of the FNM, but with a constant corpus

size of 10,000 for each year t (representing a canonical literature from which the main

body of authors sample). The cumulative canon, Nt, thus grows by 10,000 words per

year. The partial sample, St, at time t can copy words from all canonical literature,

Nt, up to that time step. We set � ¼ 0:003 and run for t ¼ 301 time steps repre-

senting years between 1700 and 2000, which are the same parameters used in

the FNM.

6.2. 1-gram data

The 1-gram data are available as csv ¯les directly from Google's Ngrams site [25]. As

in a previous study [1], we removed 1-grams that are common symbols or numbers,

and 1-grams containing the same consonant three or more times consecutively. As in

our other studies [1, 8, 6], we normalized the count of 1-grams using the yearly

occurrences of the most common English word, the. Although we track 1-grams from

the year 1700, for turnover statistics we follow other studies [40] in being cautious

about the n-grams record before the year 1800, due to misspelled words before 1800

that were surely digital scanning errors related to antique printing styles of that may

con°ate letters such as `s' and `f' (e.g. myfelf, yourfelf, provi¯ons, increafe, afked,

D. Ruck et al.
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etc.). The code used for modeling is available at:https://github.com/dr2g08/Neu-

tral-evolution-and-turnover-over-centuries-of-English-word-popularity.
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Appendix A. Neutral Model Yields Zipf's Law

Recent analytical results [45] show that the expected number of variants of popu-

larity rank k under the stationary distribution is

fk ¼ �Nt

ð1� �Þk�1

k

Yk�1

i¼1

Nt � i

Nt � i� 1þ i�
: ðA:1Þ

Note from this expression [45], we can ¯nd the ratio of fkþ1=fk, which is

fkþ1

fk
¼

�Nt
ð1��Þk
kþ1

Qk
i¼1

Nt�i
Nt�i�1þi�

�Nt
ð1��Þ k�1

k

Qk�1
i¼1

Nt�i
Nt�i�1þi�

: ðA:2Þ

which simpli¯es to

fkþ1

fk
¼ kð1� �ÞðNt � kÞ

ðkþ 1ÞðNt � k� 1þ k�Þ : ðA:3Þ

If Nt is large compared to k and � is small, then this simpli¯es to

fkþ1

fk
� k

kþ 1
; ðA:4Þ

which is an expression for Zipf's law, because the ratio of the word frequencies is

inversely proportional to the ratio of their ranks.

Appendix B. Genetic Algorithm

The PNM has ¯ve parametersN ; �;S0; � and T . The number of time steps, T is ¯xed

at 301 (representing calendar years). The exponential growth rate of the sampled

corpus, �, is ¯xed at 0.02. The other three parameters ��� initial sampled corpus size

(S0), latent corpus size, N , and innovation rate (�) ��� are free. We bound potential
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values of N between 5000 and 30,000 and S0 between 1000 and 10,000. In both cases

the lower bound is chosen to ensure a minimum acceptable vocabulary size is reached

and the upper bound is limited by computational constraints. The product N� was

limited between 5 and 90, as the region in which Neutral model yields a reasonable

Zipf's law. For the genetic algorithm, the ¯tnesses were scored by the following

equations and a variable values:

Summary statistic Equation Target variables

Heaps Law v ¼ Anb A and b

Zipf's law f � k�� �

Turnover decay (y ¼ 50) zð50Þ ¼ z0e
��50t �50 and z0

Turnover decay (y ¼ 100) zð100Þ ¼ z0e
��100t �100 and z0

Turnover decay (y ¼ 200) zð200Þ ¼ z0e
��200t �200 and z0

The PNM parameter combination receives a point when each of the target sta-

tistics is approximately the same as the equivalent value from the n-grams data. The

genetic algorithm starts with 100 random parameter combinations then the following

steps are repeated until they converge on parameter combinations that maximize

¯tness scores:

(1) The ¯ttest 20% from the corpus is passed to the next generation.

(2) The remaining 80% is populated by recombinations of two randomly selected

parents from the ¯ttest 20% from the previous generation.

(3) 15% of the new agents are subject to random mutation of a single parameter to

ensure diversity in the corpus.
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