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Abstract

In this paper we present an evolutionary simu-
lation in which a population of 10 mobile robots
has to develop a simple behavior consisting in
the discrimination of two different foraging areas
present in the environment. We show that, given
a minimal selective pressure, a combination of in-
dividual learning, social facilitation, and selection
at the population level can lead to effective re-
sults. Consistently with ethological findings, we
argue that such dynamics in which simple mech-
anisms interact at different levels can account for
instances of social transmission of behaviors usu-
ally interpreted as intentional acts of copying.

1. Introduction

Human beings show a behavioral diversity that can-
not be compared to the variability present in other
species. This variety of behavioral patterns is not ex-
plained by genetic variation (humans, contrasted to phy-
logenetically related species, are greatly homogeneous
from the genetic point of view) and, apparently, can be
explained only in part by the environmental diversity
(Pagel and Mace, 2004). Processes of social learning are,
in general, presumed to play the most important role in
shaping this diversity (Richerson and Boyd, 2004).

However, this correct argument is at times used to
derive some implications that could not be always ac-
curate. In the first place, it is supposed that social
learning is limited to human beings, or, at least, that
it is restricted to some “cognitively gifted” species like
great apes or primates in general. Secondly - and closely
related to the previous one - there is the conviction
that genuine social learning is permitted only by so-
phisticated cognitive machineries and that only high-
level forms of social learning, like imitation, can support
a reliable transmission of behaviors between individu-
als. Finally, social and individual learning are consid-
ered as two processes that differ in a substantial way,
with the former considered basically as a process of ex-
plicit copy of a conspecific’s behavior. For reviews on

social learning in ethology see (Heyes and Galef, 1996,
Zentall and Galef, 1988), also related to artificial
agents and robots (Dautenhahn and Nehaniv, 2002,
Nehaniv and Dautenhahn, 2007), for a general review
(Hurley and Chater, 2005).

In general, it is probably true that the role that so-
cial learning plays among human beings is greater than
the role that it plays among other species and it is
not clear, up to now, what kind of mechanisms can
permit the relative stability of the cultural patterns in
human groups and support cumulative cultural evolu-
tion. However, especially in the last twenty years, ethol-
ogists have shown how social learning can be impor-
tant for the development of complex behavioral skills
in primates (Tomasello, 1996), but also in other ver-
tebrates like, just to cite the more influential stud-
ies, rats (Laland and Plotkin, 1990, Galef, 1996), birds
(Sherry and Galef, 1984), fish (Dugtakin, 1996). In ad-
dition to this, the social transmission of behavior in these
species is often realized without the need of complex cog-
nitive abilities but by simple processes that exploit the
dynamics between learning at the individual level, the
characteristics of the environment, and the genetic evo-
lution at the population level, without an easy-to-trace
distinction between the processes.

The human case of course could be different, however
is not impossible that also in the human development
simple mechanisms of social influence can guide and en-
hance individual learning and eventually play some role
in the development of more complex social learning skills
or act together with them. We prefer to use a minimal
definition of social learning, by which we do not refer
to a specific modality of learning but to a general set of
adaptive modifications that take place in a single agent
during its lifetime and that are influenced in some way

by the interaction with conspecifics.
Individual based modeling or, as in our case, the

development of artificial organisms (robots or simu-
lated agents) through artificial life techniques can be
an excellent way to explore this kind of dynamics
(Noble et al., 1999, Noble and Todd, 2002). In partic-
ular, artificial life techniques are particularly suitable to
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take into account different levels of analysis, like pro-
cesses of learning at the individual level, interactions be-
tween individuals and between individuals and the envi-
ronment, and selective pressures at the population level,
that are often very difficult to consider resting only on
empirical observations or laboratory experiments. Math-
ematical models, on the other hand, had proven to
be extremely important and insightful tool for under-
standing social learning and cultural evolution dynam-
ics (Richerson and Boyd, 2004) but, in most cases, they
rely on the simplifying assumption that a behavior is
simply passed on from an individual to another. Even
if this simplification can be correct in most of the cases,
findings by ethologists and psychologists show that a be-
havior can be socially acquired in many possible ways
(Call and Carpenter, 2002, Galef and Laland, 2005) and
it is worthwhile to argue that the specific way in which
the behavior is acquired can be an important factor for
the resulting dynamic at the population level.

In our contribution we present a simple experimental
scenario in which a team of 10 simulated robotics agents
has to develop an adaptive behavior consisting in the
discrimination of two different foraging areas present in
the environment. The team is subjected to a selective
pressure and an on-line genetic algorithm operates on
the agents’ learning modalities. In particular, as we will
explain in the next section, two characteristics can be
inherited: the strength of the learning and its modal-
ity (individual or social). Individual learning is a simple
blind process that reinforces the “preference” of an indi-
vidual for one of the two areas, independently from the
features of the specific area. In the same fashion, social
learning just consists in the fact that the strength of this
process is modulated by the number of individuals lo-
cated nearby. We show, in the third section, that, given
a minimal selective pressure, social learning evolves and
that the combination of a blind but socially influenced
individual learning with selection at the population level
can lead to an adaptive social transmission of the behav-
iors.

2. The experimental set-up

In order to investigate the adaptive role played by the
social facilitation in acquiring new behavior, we ran a
robotic simulation in which a population of robots have
to survive in an unknown environment. The simulation
consists of multiple replications of the same basic task, in
which robots have been tested in different environmen-
tal conditions. In particular, each condition provides a
different selective pressure under which robots have to
adapt in order to survive.

2.1 The robotic model

The environment consists in a square arena of 200 x 200
cm surrounded by walls. The floor of the arena is grey
and contains two circular areas with a diameter of 60
cm colored in black and white, respectively (Fig. 1). A
population consists of 10 simulated e-puck robots (Fig.
2(a)) which are provided with simple sensory-motor ca-
pabilities that allow them to move, gather information
from the environment and to produce sound signals with
a fixed intensity. The robots have a circular body with
a radius of 37 mm, 8 infrared sensors placed around the
body, 1 ground sensor placed on the bottom of the robot,
1 microphone and 1 speaker.

Figure 1: The environment of the experiment. Black and

white circles represent the two foraging areas. Small gray

circles represent the 10 robots.

(a) The e-puck robot. (b) The neural controller.

Figure 2: The e-puck robot and the neural controller. Thick

lines represent the weights that are modified in the simula-

tion. As it is shown, the speed modulator does not operate

on the outputs but it acts directly on the motors’ activa-

tions. The intensity of the sound signal is used to modify the

learning rate in case of social individuals. See the text for

details

Robots’ neural controllers consist of artificial neural
networks with 10 sensory neurons and 3 motor neurons
(Fig. 2(b)). Eight sensory neurons encode the activation
states of the 8 infrared sensors (which detect obstacles
up to a distance of 4 cm) and two neurons measure the
activation of the ground sensors that encode the color



of the floor below the robot (gray [0 0], white [1 0], and
black [0 1]). The first two motor neurons encode the de-
sired speed of the two corresponding wheels normalized
between -MaxSpeed and +MaxSpeed. The third mo-
tor neuron instead encodes the maximum speed of both
wheels (i.e. the MaxSpeed parameter is normalized in
the range [0;10]). The third motor neuron thus acts as a
modulator that regulates the speed with which the robot
moves or turns at each time step. The 8 sensory neurons
that encode the state of the infrared sensors are con-
nected to all the three motor neurons. The two sensory
neurons that encode the color of the ground, instead,
are connected to the third motor neuron only (i.e. to
the motor neuron that regulates the maximum speed of
the two wheels).

The robots continually emit a sound signal of fixed
intensity ((0.1 I ) - See section 2.3) through their speakers
when they are located in a foraging area, independently
from its color. Moreover, the robots can detect through
their microphones the signals produced by other robots
located nearby.

As in the case of (Acerbi et al., 2007), in order to pro-
vide the robots of the minimal sensory-motor capabili-
ties that allow them to move around the environment
and avoid walls, prior the starting of the simulation,
robots are pre-trained through an evolutionary method
(Nolfi and Floreano, 2002) for developing an obstacles
avoidance behavior and for exploring the environment
in an arena that does not contain colored areas. This
pre-training process only concerns the strength of the
connections between the 8 infrared sensors and the three
motor neurons. See (Acerbi et al., 2007) for further de-
tails. Because of this procedure, the behavior of the
robots outside the areas is already determined and can-
not be modified during the simulation, therefore robots
can only modify their behavior inside the areas.

In the simulation the population is placed in the en-
vironment and the task of the robots is to adapt and
survive as long as possible in an environment that con-
tains the white and the black target areas.

Each robot of the population starts its life with a fixed
amount of energy (i.e. 2000 units) and the environment
provide two different source of selective pressure. In all
experimental conditions every time step spent outside
the areas causes the loss of 1 unit of energy, while every
time step spent in the black area causes a variable loss of
energy units, depending on the experimental condition.
The white target area does not affect the energy level
of the robots. In the simulation we test the robots in
16 different conditions in which the loss of energy in the
black area varies from 0 to 15 energy units per time step.
In this way, the manipulation of the amount of energy
lost in the black area determines the selective pressure
under which robots have to survive.

Therefore, with the exception of the first experimen-

tal condition (energy loss equal to 0), the simulation task
consists in locating and spending time in the white tar-
get area, while avoiding the black one. In practice, given
the pre-evolved exploratory behavior, the free parame-
ters that encode the strength of the connection between
the two ground sensor neurons and the third motor neu-
ron should be set so to allow the robot to slow down
and, eventually, to stop in the white target area and to
quickly move out from the black target area. It is worthy
to note, however, that the robots do not have any direct
feedbacks about the quality of a target area or about
their own energy. In fact, they only have information
about the colors of an area when they are in it, but they
do not know how remaining in a particular area affects
their energy state. This means that the experience of a
particular area does not provide any information about
the correct behavior that should be performed in that
area.

In all experimental conditions, the population is eval-
uated for 1 trial lasting 20000 time steps (of 100ms each)
and each robot its allowed to live for about 2000 time
step. When a robot finishes up its energy it dies and
when a robot lives for 2000 time step it has a small
probability of dying for every further time step of its
life (1 ). When a robot dies, it is replaced with a new
robot placed in the environment in a randomly chosen
position and orientation, with full initial energy. The
dynamic of the adaptation to the environment consists
of two interplaying processes: one that acts at a genetic
level and another that acts at a social level.

2.2 Genetic inheritance

Each robot of the population has a genetic code consist-
ing of two parameters (i.e. 2 genes) that determine two
different aspects of its social reliance. The first param-
eter ω, which takes values -1 or 1, determines if a robot
learns only on the basis of its own experience or if it also
relies on social cues provided by the other robots. The
second parameter φ (which varies in the range [0;1]) de-
termines the strength of the learning. If ω is equal to -1,
it determines the value of the learning rate of the robot.
If ω is equal to 1, this gene determines the extent to
which the robot relies on social cues. More details about
the role of ω and φ are provided in the next section.

At the beginning of the simulation the two parameters
are randomly set, so to generate a mixed population.
Moreover, when a robot dies during the simulation, an
on-line genetic algorithm acts on the population, by re-
placing the died robot with a newborn that inherits the
two genes from a randomly individual selected among the
robots that live from at least 2000 time steps, i.e. the
oldest robots of the population. Notice that the duration
of a robot’s life is an indirect indication of the adaptive-
ness of its behavior. Indeed, the fact that a robot lives
more than 2000 time steps means that it acquired the



capacity to correctly discriminate between the two ar-
eas during its ontogenetic development. During the ge-
netic transmission process gene ω can switch its original
value with a probability of 10% and gene φ is mutated
by adding a random value in the range [-0.1;0.1].

2.3 Learning

This process affects the way in which robots modify their
behavior during the life. In particular, the two synap-
tic weights that connect the two ground sensor neurons
and the third motor neuron are trained by means a non-
directional learning algorithm. In practice, the weights
are initialized, at the beginning of each trial, with a null
value, that is, the robots tend to go away from both the
areas. When a robot happens to stay inside a target
area, a learning algorithm acts to reinforce with a posi-
tive feedback the individual preference for that area, in-
dependently from the color of the area and consequently,
from the effect on its energy. This positive feedback
mechanism is realized by modifying the two weights ev-
ery time an individual is inside one area through the
addition of a randomly chosen value in the interval [-
lrate;+lrate] to their current value, and by retaining only
the variations that lead to an increase of the time spent
by the individual in the corresponding target area. The
learning rate is modulated differently depending on the
value of ω:

lrate =

�
φ if ω = −1
φ · QI if ω = 1

(1)

where Q is the intensity of the signal perceived by the
robot inside the area expressed in I units and it varies
linearly in the range [0.1;1.0] according to the number
of individuals located in the same foraging area: 0.1I
corresponds to one robot in the area (the learner robot
itself), and 1.0I to all the 10 robots in the same area. In
practice, in the social case the learning rate is function
both of φ and of the intensity of the signal detected.

3. The emergence of social exploitation

As we said above, the described simulation has been run
considering sixteen different values of energy loss in the
black foraging area, i.e. from 0 to 15. In particular, for
each replication, 100 different populations of ten robots
have been randomly generated and tested in the same
environmental conditions.

From the results of the simulation we can observe an
interesting relationship between the exploitation of social
cues by the robots and the amount of selective pressure
provided by the environment.

In order to have a measure of this effect with respect
to the different environmental conditions, for every repli-
cation we count the number of robots that rely on social

cues in each population. To do this, we count how many
robots express the parameter ω equal to 1 for each of the
100 population in all the conditions and we consider a
population as social only if the majority of the the robots
have an ω value equal to 1. In particular, in the follow-
ing sections we we will call social population a population
in which more than five robots use social cues to orient
their individual learning and, similarly, social individual

a robot that expresses that particular behavior. On the
basis of this measure, the graph in figure 3 clearly shows
that the number of social populations grows with the in-
crease of the selective pressure, due to the increase of
the energy loss in the black target area. It is interesting
to note, however, that only a minimal adaptive pressure
leads the population towards the exploitation of the so-
ciality. In fact, only in the case of no adaptive pressure
(energy loss equal to 0) the amount of social populations

is less than the 50% on the total of 100 replications.

Figure 3: Number of social populations for each experimental

condition.

The adaptiveness of the social exploitation is con-
firmed by the differences of the mortality (i.e. the num-
ber of robots that “die” during each trial) between the
social populations with respect to the non-social ones.
Indeed, by looking at Fig. 4 we can see that the mortal-
ity rate of the former, with the exception of cases 0 and
1 of energy loss, is always lower of the mortality of the
latter and, after 4 units of energy loss, it remains stable
despite the increment of the selective pressure provided
by the environment.

We discussed above the fact that, given a minimal se-
lective pressure, most of the replications produce social

populations. More in detail, Fig. 5 shows the final com-
positions of the populations for all the replications in the
different experimental conditions. We can remark that
the number of populations with all social individuals (10)



Figure 4: Average mortality for each experimental condition.

Dashed line: non-social populations. Continuous line: social

populations.

slightly increase during the first experiments, parallel to
the increasing of the selective pressure, till it reaches a
more or less stable value. Moreover, is interesting to note
that the increasing of social populations is mainly due to
the increasing of groups in which all or most individuals
are social (groups made by 8, 9, or 10 social individuals

account for approximately the 60-70% of the replications
after energy loss equal to 9). These two facts, considered
together, suggest a more subtle dynamic in the evolution
of social exploitation.

In particular, the latter finding can indicate that, in
the majority of the cases in which we observe social ex-
ploitation, we are in presence of a positive feedback that
guide the adaptive search at both phylogenetic and on-
togenetic level. This hypothesis contribute to interpret
the overall results of the simulation.

The relation between adaptive pressure and social ex-
ploitation derives by the interactions among the three
forces that, at different levels, guide the adaptation pro-
cess of the populations: the individual learning algo-
rithm, the social interaction, and the genetic transmis-
sion. In fact, given that the learning algorithm provided
to the robots is totally “blind” with respect to the adap-
tiveness of the behavior, the only way of orienting the
learning process, at the ontogenetic level, is related to
the fact that individuals with adaptive behavior tend to
survive more than others. Therefore, under a selective
pressure provided by the environment, a social individual

has more chances of acquiring the adaptive behavior, be-
cause robots with maladaptive behavior tend to die with
more frequency.

At the same time, at the genetic level, thanks to the
the transmission mechanism, individuals with the adap-

Figure 5: Final composition of the populations for all the

replications in the different experimental conditions. De-

pending on the number of social individuals populations go to

black (no social individuals) to white (10 social individuals).

See colorbar on the right.

tive behavior are favored in propagating their genes.
This fact produces an increase in the number of social in-

dividuals within a given population. In turn, this makes
more advantageous (with respect to the early stages of
the evolution) for a newborn to be social.

4. Conclusion

We have demonstrated on a simple experimental scenario
how social facilitation of individual learning combined
with a selection process operating at the population level
can be useful in developing adaptive behaviors in small
populations of autonomous robots. It is important to re-
mark how this adaptive mechanism, that involves a form
of social transmission, or diffusion, of behaviors, can be
considered a form of social learning and that social learn-
ing, here, is not the evolved mechanism that modulate
the strength of the individual learning, but the combi-
nation between this mechanism, the individual learning,
and the selective pressure. Note that the effectiveness
of the this process is not simply related to the magni-
tude of the learning rate per se: it is precisely the fact
that social influence can modulate this magnitude dur-
ing the time that makes the whole process adaptive. In
fact, we have to consider that a learning rate not so-
cially modulated will affect the behavior of a robot in
the same way in both areas, making impossible for new-
born robots to develop selectively a preference for only
one of the two areas (see also (Acerbi et al., 2007) in
which also the behaviors of populations with fixed learn-
ing rates have been analysed). As we pointed out in the
Introduction, we believe that it is plausible that at least



some forms of what is named “social learning” are the
outcomes of this kind of dynamics and that artificial life
simulations are an important tool to test this hypothesis.

Of course, further works are needed to develop this
project. For example, in this study we do not considered
deeply the role of the parameters φ (that determined
the strength of learning): how different strengths can
impact the adaptivity of the process? Is it always the
best solution to learn faster? We can imagine that, in
relation with selective pressures on learned traits, social
learners can adaptively vary the strength of learning so
to learn, perhaps, only when most of the individuals are
in an area. In future, we also plan to investigate the
scalability of the mechanism in different environmental
conditions and with different selective pressures, namely
by increasing the number of foraging areas, by increasing
(or decreasing) the number of robots, by increasing the
complexity of the perceptual categorization process, or
by changing the environmental conditions through time.
Our hope is that this study could be useful to draw a
preliminary sketch of a bigger picture that we consider
deserving attention, possibly also in relation to human
ontogenetic development.
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