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Orienting Learning By Exploiting Sociality: An
Evolutionary Robotics Simulation

A. Acerbi, D. Marocco

Abstract - One of the advantages of sociality resides in the
opportunity of exploiting the behavior of other individuals of
the same group as a reliable source of information. In this
paper we present an evolutionary simulation in which a
population of 10 mobile robots has to develop a simple
behavior consisting in the discrimination of two different
foraging areas in the environment. We show that, given a
minimal environmental pressure, a combination of learning
oriented by social cues and selection at population level can
lead to effective results. We further analyse the dynamic of the
evolution of sociality, focusing on the fact that the global
adaptiveness is a product of the combination of singularly non­
adaptive processes and on the presence of a reinforcing positive
feedback within populations, that is, the more 'social' a
population is, the more advantageous it is to exploit social cues
in that population.

1. INTRODUCTION

THE evolution of sociality among pr~viously. ~on-~ocial
entities has been identified as a major transition In the

history of life [1]. An evolutionary explanation of the
emergence of sociality requires to recognize the selective
advantages that a single individual can obtain by staying in
a group or, to say it better, the selective e advantages that
being a member of a social group give to an individual,
compared to being a solitary part of a collection of non­
related entities.

Here we concentrate on one of these possible advantages,
namely the fact that individuals who live in a group can
exploit other individuals of the same group (co-groupers) as
a reliable source of information about the environment.
From the point of view of a social animal, the other animals
that live in the same group share one obvious characteristic:
they are alive. Thus, they will behave, on average, in an
adaptive manner and their behavior will be specifically
tuned for the environment in which they are living [2].

From an ethological perspective, the modification of
behavior during lifetime, by exploiting the interactions with
conspecifics, is a useful definition of what is called social
learning (for reviews, and definitions, of social learning in
ethology see [3][4]).

Human beings heavily rely on social learning for the
development of their behavioral repertoire [5] and they are
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likely to be the only species that makes an extensive use of
cognitively advanced forms of social learning, that require
both the explicit copy of results and actions performed by a
model [6][7] and an active role of the model in the
transmission of information, such as teaching ([8]; forms of
teaching have been observed also in other species, even in
ants, see [9], but the issue of teaching among other species
other than humans remains still controversial. For a brief
review see [10]).

Nevertheless, especially in the last twenty years,
researches in animal behavior have shown how social
learning can be significant for the development of complex
behavioral skills in primates [11] and in other vertebrates
like, just to cite some influential studies, rats [12][13], birds
[14], and fish [15]. In addition, even if social learning
studies have been almost entirely focused on vertebrates,
several pieces of evidence indicate that forms of social
learning are also present in insects (for a review on social
learning in insects see [16]).

Those ethological findings, taken together, suggest two
considerations. Even if it is likely that the role played by
social learning among human beings is greater than the role
it plays among other species, although the mechanisms that
permits the relative stability of cultural patterns and
supports cumulative cultural evolution in human groups still
remain not clear (see different answers to the last questions
in [8], [5], and [17]), social learning does not seem restricted
to human beings. Hence, the selective advantage of living in
social group, because of social learning, can be more
pervasive than generally thought.

Besides the social transmission of behaviors in species
different than humans is often realized without the need of
complex cognitive machineries, but by simple processes that
exploit the dynamics between learning at the individual
level the characteristics of the environment and of the
population, and the genetic evolution at population level,
without an easy-to-trace distinction between processes.

In relation to the last point, individual based modeling, or
the development of artificial organisms (robots or simulated
agents) through artificial life techniques, can be an excellent
way to explore this kind of dynamics ([18][19][20]; for a
general review see [21][22]). In particular, artificial life
techniques are especially suitable to take into account

different levels of analysis (agent - population ­
environment) and adaptive processes that happen at
different timescales (lifetime learning - genetic evolution)
which are often difficult to consider resting only on
empirical observations or laboratory experiments.
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In addition to that, using robots or simulation platforms
that carefully reproduce real robots' behaviors, as in the
present case, forces the experimenter to implement learning
strategies in a real physical system. Hence, differently from
abstract agent based modeling or analytical modeling, in
which a behavior is usually represented by a single variable
that can be acquired or not by an agent, robotic models are
constrained to realize physically plausible learning
mechanisms and to take into account the real physical
dynamic of an agent that interact with other agents and with
the environment [23]. Even if mathematical models have
proven to be extremely important and insightful tools for
understanding social learning and cultural evolution
dynamics (e.g., see [5]), the additional complexity provided
by robotic models can be a further useful commitment in
designing new experiments.

In our contribution we present a simple experimental
scenario in which a team of 10 simulated robotic agents has
to develop an adaptive behavior consisting in the
discrimination of two different foraging areas present in the
environment. The team is subjected to a selective pressure
and an on-line genetic algorithm operates on the agents'
learning behavior. In particular, as we will explain in the
next section, two characteristics can be inherited: the
strength of the learning and its modality (individual or
social). The individual modality is a simple blind process
that reinforces the 'preference' of an individual for one of
the two areas, independently from the features of the
specific area. In the same fashion, in the social modality the
strength of the learning process is modulated by the number
of individuals located nearby.

In the third section we show that, given a minimal
environmental pressure, the social modality prevails over
the individual one among the majority of the populations
tested during the experiment: the combination of a blind, but
socially oriented individual learning, together with a
selection process at the population level can lead to an
adaptive social transmission of behaviors. That is, it can
lead to a simple form of social learning. In addition to
previous works [24][25], we analyse in detail the dynamic
of the evolution of sociality by showing the presence of a
reinforcing positive feedback between the number of
individuals that exploit the sociality and the adaptiveness of
the exploitation itself. In other words, the more a population
is ' social', the more advantageous it is to be social in that
population.

II. EXPERIMENTAL SET UP

To investigate the adaptive role of sociality in the
orientation of learning and how the further development of
sociality within a population is favoured by this process, we
ran a robotic simulation in which a population of robots has
to survive in an unknown environment. The simulation
consists of several replications of the same basic task, in
which robots have been tested in different environmental
conditions. In particular, each condition provides a different
selective pressure under which robots have to adapt in order
to survive.

A. The robotic model

The environment consists of a square arena of 200 x 200
em surrounded by walls. The floor of the arena is grey and
contains two circular areas with a diameter of 60 cm
coloured in black and white, respectively (Fig. I).

Fig. I. The environment of the experiment. Black and white circles
represent the two foraging areas . Small grey circles represent the 10
robots .

A population consists often simulated e-puck robots (Fig.
2(a)) which are provided with simple sensory-motor
capabilities that allow them to move, gather information
from the environment and to produce sound signals with a
fixed intensity. The robots have a circular body with a
radius of 37 mm and their sensor apparatus is provided of
eight infra red sensors placed around the body that provide
information about the presence of an obstacle (i.e. walls or
other robots within a range of about 4 em), one ground
sensor placed at the bottom of the robot, one microphone,
and one speaker.

Robots' neural controllers consist of artificial neural
networks with ten sensory neurons and three motor neurons
(Fig. 2(b)). Eight sensory neurons encode the activation
states of the eight infra red sensors and two neurons
measure the activation of the ground sensor that encodes the
colour of the floor below the robot (gray [0 0], white [I 0],
and black [0 I]). The first two motor neurons encode the
desired speed of the two corresponding wheels normalized
between -MaxSpeed and +MaxSpeed. The third motor
neuron instead encodes the maximum speed of both wheels
(i.e. the MaxSpeed parameter, normalized in the range
[0;10]). The third motor neuron thus acts as a modulator that
regulates the speed with which the robot moves or turns at
each time step. The eight sensory neurons that encode the
state of the infra red sensors are connected to all the three
motor neurons. The two sensory neurons that encode the
colour of the ground, instead, are connected to the third
motor neuron only (i.e. to the motor neuron that regulates
the maximum speed of the two wheels).

When robots are located in a foraging area,
independently from its colour, they continually emit a sound
signal of fixed intensity ((0.1 I) - See section 'Genetic
Inheritance ') through their speakers. Moreover, the robots
can detect through their microphones the signals produced
by themselves or by other robots located nearby.
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stop in the white target area and to quickly move out from
the black target area.

. It is worthy to note, however, that robots do not have any
direct feedback about the quality of a target area or about
their own energy. In fact, they only have information about
the colour of an area when they are in it, but they do not
know ho~ remaining in a particular area affects their energy
state. ThIS means that the experience of a particular area
does not provide any explicit information about the correct
behavior that should be performed in that area.

In all experimental conditions, the population is evaluated
for one trial lasting 20000 time steps (of lOOms each) and
every robot is allowed to live for about 2000 time steps.
When a robot finishes up its energy it dies and when a robot
lives for 2000 time steps it has a small probability of dying
for every further time step of its life (1%0). When a robot
dies, it is replaced with a new robot placed in the
environment in a randomly chosen position and orientation,
with full initial energy.

The dynamic of the adaptation to the environment
consists of two interplaying processes: one that acts at the
phylogenetic level (genetic inheritance) and another that
acts at the ontogenetic level (learning).

B. Genetic inheritance

Each robot of the population has a genetic code consisting
of two parameters (i.e. two genes) that determine two
different aspects of its learning behavior. The first parameter
(J) , which takes values 0 or 1, determines if a robot learns
only on the basis of its own experience (individual
modality) or if it also relies on social cues provided by the
other robots (social modality). The second parameter tp

(which varies continuously in the range [0;1]) determines
the strength of learning. More details about the role of (J) and
tp are provided in the next section.

At the beginning of the simulation, 50% of the population
prese~ts an individual modality and 50% a social modality.
That IS, the parameter (J) of 50% of the population (5 robots)
is set to 0, while in the other 5 robots is set to 1. In this way,
at the beginning of the simulation, any bias of the
population towards one of the two modalities is prevented.
The value of the parameter tp is randomly set for each robot
(notice the difference with respect to Marocco and Acerbi
2007, where the parameters where both randomly set at the
beginning of the simulation). When a robot dies during the
simulation, an on-line genetic algorithm acts on the
population, by replacing the dead robot with a newborn that
inherits the two genes from a randomly individual selected
among the robots that live from at least 2000 time steps, i.e.
the oldest robots of the population. Notice that the duration
of a robot's life is an indirect indication of the adaptiveness
of its behavior. Indeed, the fact that a robot lives more than
2000 time steps is a good clue of the fact that it has acquired
the capacity to correctly discriminate between the two areas
during its ontogenetic development or, at least, that it did
not develop a 'preference' for the black area (given that
there is a selective pressure for staying in the white one).

During the genetic transmission process the gene (J) can
switch its original value with a probability of 10% and the

· ~

Fig. 2. (left) The e-puck robot and (right) the neural controller. In
(b) thick lines represent the weights that are modified in the
simulation. As it is shown, the speed modulator does not operate on
the outputs but it acts directly on the motors' activations. The
intensity of the sound signal is used to modify the learning rate in
case of social individuals. See the text for details.

As in the case of [24] and [25], in order to provide robots
with basic sensory-motor capabilities that allow them to
move around the environment and avoid obstacles, the
robots are pre-trained through an evolutionary method [26]
for developing an obstacles avoidance behavior and for
exploring the environment in an arena that does not contain
coloured areas. This pre-training process only concerns the
strength of the connections between the eight infra red
sensors and the three motor neurons (see [24] for further
details).

Because of that procedure, the robots ' behavior outside
the foraging areas is already determined and cannot be
modified during the simulation, therefore robots can only
modify their behavior inside the areas.

At the beginning of the simulation the population is
placed in the environment, each robot at a different random
position, and the task of the robots is to survive as long as
possible in an environment that contains the white and the
black target areas.

Each robot starts its life with a fixed amount of energy
(i.e. 2000 units) and the environment provides two different
sources of selective pressure. In all experimental conditions,
every time step spent outside the areas causes the loss of I
unit of energy, while every time step spent in the black area
causes a variable loss of energy units, depending on the
experimental condition. The white target area does not
affect the energy level of the robots. In the simulation we
test the robots in eleven different conditions in which the
lo~s of energy in the black area varies from 0 to 5 energy
umts per time step with an increment of 0.5 units at every
condition. In this way, the manipulation of the amount of
energy lost in the black area determines the selective
pressure under which robots have to survive.

Therefore, with the exception of the first three
experimental conditions (i.e. energy loss from 0 to 1.0), in
which even staying in the black area is more advantageous
or equal than exploring the environment , the simulation task
consists in locating and spending time in the white target
area, while avoiding the black one. In practice, given the
pre-evolved exploratory behavior, the free parameters that
encode the strength of the connections between the two
ground sensor neurons and the third motor neuron should be
set so to allow the robot to slow down and, eventually, to
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Fig. 3. Average value of parameter oi , at the end of simulations for
every experimental condition. Value 0.5 indicates the starting
condition of the populations, in which 50% of the population rely
on individual modality and 50% rely on social modality.

that, in relation to the increase of the energy loss in the
black target area, the populations tend to be composed by a
majority of individuals with m equal to 1, thus, individuals
that employ the social modality to orient the learning.
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gene q> is mutated by adding a random value in the range [­
0.1;0.1].

C. Learning

This process affects the way in which robots modify their
behavior during the lifetime. In particular, the two synaptic
weights that connect the two ground sensor neurons and the
third motor neuron are trained by means of a non-directional
learning algorithm. In practice, at the beginning of the life
the weights are initialized with a null value, that is, the
robots tend to go away from both the areas. When a robot
happens to stay inside a target area, a learning algorithm
acts to reinforce with a positive feedback the individual
preference for that area, independently from the colour of
the area and, consequently, from the effect on the robot's
energy. This positive feedback mechanism is realized by
modifying the two weights every time an individual is inside
one area through the addition of a randomly chosen value in
the interval [-lrate;+lrate] to their current value, and by
retaining only the variations that lead to an increase of the
time spent by the individual in the corresponding target
area.

The learning rate is modulated depending on the value of
w:

III. R ESULTS

The simulation presented in this work has been run
considering eleven different values of energy loss in the
black foraging area, i.e. from 0 to 5. In particular, for each
replication, 100 different populations of ten robots have
been randomly generated and tested in the same
environmental conditions.

Where Q is the intensity of the signal perceived by the
robot inside the area expressed in I units and it varies
linearly in the range [0.1;1.0] according to the number of
individuals located in the same foraging area: 0.1I
corresponds to one robot in the area (the learner robot
itself), and l.01 to all the 10 robots in the same area.

In practice, if ro is equal to 1 (social modality) the
learning rate is a function both of q> and of the intensity of
the signal detected.

A. The adaptiveness ofsocial exploitation

The results of the simulation show an interesting
relationship between the exploitation of social cues by the
robots and the amount of selective pressure provided by the
environment.

To measure the consistency of this relationship with
respect to the different environmental conditions , for every
replication we calculated, at the end of the simulation, the
average value of the parameter ro among a given population.
On the basis of this measure, the graph in figure 3 shows
that the average value of to within populations moves
towards values above 0.5 according to the quantity of
selective pressure provided by the environment. This means

irate = f qJ Qt qJ' I

if w = 0
if to = 1

We can also notice that also a minimal adaptive pressure
leads the population towards the exploitation of sociality. In
fact, only in the case of no adaptive pressure in
differentiating between the two areas (energy loss lower
then 1.0) we observe values lower then 0.5 for the average
of ill. In those cases, in fact, there is no difference between
the two areas and the punishment provided outside the areas
leads the robots to quickly locate and remain in one of the
two target areas without distinctions . This fact, in tum,
makes the individual modality, i.e. the fact that robots do
not rely on social cues, more advantageous over the social
modality.

However, as soon as the adaptive pressure provided by
the increased energy loss in the black area starts to push the
population towards the need of locating the white area and
avoid the black one, the average of the population moves
toward values of ill greater than 0.5.

According to the average value of ill, that reflects the
number of robots which rely on social cues in each
population, we consider a population as 'social' if its
average w is greater than 0.5, meaning that the majority of
the robots have a w value equal to I. In particular, in the
following sections we will call social population a
population in which more than five robots use social cues to
orient their individual learning and, similarly, social
individual a robot that expresses that particular behavior.

The adaptiveness of social exploitation is also confirmed
by the differences of the mortality (i.e. the number of robots
that ' die' during each trial) between social populations and
the non-social ones. Indeed, figure 4 shows the difference
between the total number of died individuals between social
and non-social populations for different energy losses. By
looking at the graph we can see that, with the exception of
energy loss 0, the values are positive, that is the mortality
rate of the former is always lower than the mortality of the
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latter, and the difference continues to increase roughly
following the progressive increment of the selective
pressure.

Figure 6 shows the average value of q>, i.e, the parameter
that determines the strength of learning (see above), through
time for social and non-social populations.
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Fig. 4. Differences of the average mortality rate (i.e. the number of
robots died during a trial) between non-social population and social
population for every experimental condition .

Fig. 6. Average value of the parameter q> through time for condition
of energy loss 5.0. Dashed line: non-social populations . Continuous
line: social populations .
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In the former case , the initial value of q>, which is
randomly initialized at the beginning of the simulation, is
around 0.5, but it suddenly drops and stays lower for about
2500 steps. After 2500 steps it starts to grow up again until
it reaches a value around 0.6 at the end of the simulation. A
possible interpretation of this dynamic can illustrate how the
two inherited parameters (q> and w) interact. In fact, during
the first steps of the simulation, the ratio between social and
non-social individuals in the population is roughly 50%:
non-social individuals can be present with equal probability
in both areas and social individuals can hardly, for that
reason, make use of social information to correctly orient
their learning. At this time of the simulation learning is in
general a risky job, therefore the selection process favours
those individuals that learn slowly, as they tend to continue
in exploring the environment without stopping in the target
areas. This fact reduces the average value of q> in the
population.

Nevertheless, selection does favour also those individuals
that , for random reasons, stop in the white area, so that , after
a while, more robots are located in the white area than in the
black one. At this point , learning starts to be reliable for a
social individual, so that q> increases among social
populations and remains above the starting value for the rest
of the simulation.

This analysis also demonstrates that the trend of q> is
strictly related to the trend of w (see figure7) . In fact, higher
values of q> are not selected until most of the population is
composed by social individuals, because only in that
condition the information provided by the behavior of co­
groupers is reliable. This interpretation is further confirmed
by the fact that the average value of q> for non-social
populations, in the same experimental condition, (energy
loss 5.0), never goes over 0.5 (see figure 6).

10

Moreover, by looking more in detail at the final
compositions of populations for all the replications in
different experimental conditions (figure 5), we can notice,
as we said above, that the number of populations with a
large majority of social individuals increases, following the
increment of the selective pressure.

00 05 1.0 15 20 25 30 35 4 0 4 5 50
energy los s

Fig. 5. Final composition of the populations for all the replications
in the different experimental conditions. Depending on the number
of social individuals populations go to black (no social individuals)
to white (10 social individuals). See color bar on the right.

However, in addition to that, is interesting to note that the
increasing of social populations is mainly due to the
increasing of groups in which all or most individuals are
social (groups made by 8, 9, or 10 social individuals account
for approximately 50-60% of the replications after energy
loss equal to 3.0).

B. The dynamic ofsocial exploitation

In order to analyse with more details the emergence of
sociality we focus on the experimental condition in which
energy loss is equal to 5.0, that is, the condition that
presents the highest selective pressure.
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0.001) meaning that, at the beginning of the simulation,
being a SocSoc is not better than being a SocNSoc, if not
even worse (for a discussion related to this point see Acerbi
et al. 2007). Thus, we can conclude that being a social
individual is not adaptive per se, but it is adaptive only with
respect to the overall condition of the population.
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065 V. DISCUSSION AND CONCLUSIONS

The findings presented in the previous section suggest
that, in the cases in which we observe the evolution of
sociality, we are in presence of a reinforcing positive
feedback towards sociality, that guides the adaptive search
at both phylogenetic and ontogenetic level.

The advantage of sociality derives primarily by the
complex interaction among three forces that, at different
levels, channel the adaptation process of the populations: the
individual learning algorithm, the social interaction, and the
genetic transmission. In fact, by considering that the
learning algorithm provided to the robots is totally 'blind'
with respect to the adaptiveness of the behavior, at the
beginning the robots tend to distribute roughly equally in the
two areas (also see Acerbi et al. 2007 for a detailed
description of this process). However, the selective pressure
at the population level favours those individuals that, for
random reasons, have developed a 'preference' for the white
area because they tend to survive more than others. At this
point, at the ontogenetic level, those individuals that can
exploit social information are favoured, as well as
individuals that learn faster. This fact, thanks to the
transmission mechanism that favours individuals with
adaptive behavior in propagating their genes, produces an
increment in the number of social individuals within a given
population. In turn, this makes more advantageous with
respect to the early stages of the evolution, for a newborn, to
be social, because in a population mainly composed by
social individuals the behavior of co-groupers tends to be a
more reliable source of information than in a population
mainly composed by non-social one.

We claim that the described adaptive mechanism, able to
generate a form of social transmission - or diffusion - of
behaviors between robots, can be considered as a genuine
form of social learning. In fact, as we pointed out at the
beginning of our contribution, social learning should not be
considered only as a form of explicit copy of behaviors that
requires high-level cognitive abilities, but also as an
emergent property of particular systems that possess certain
specific characteristics. In this view, therefore, social
learning is not a mechanism that can be directly
implemented in populations of artificial agents, or
discovered as a cognitive machinery in the heads of
observed animals. Rather, it can be viewed as a complex
emergent outcome of a multilevel interaction between
different and non necessarily - if taken singularly - adaptive
processes, such as, in the case we analysed, individual
learning, social influence and selective pressure at
population level.

In future work, we plan to investigate the scalability of
the mechanism in different environmental conditions and
selectively manipulate specific properties of the system.

Fig. 7. Average value of parameter ro (for social populations)
through time for condition ofenergy loss 5.0.

Fig. 8. Dots represent the difference between the average life span
of social individuals that belong to a social population (SocSoc)
and the average life span of social individuals that belong to a non­
social population (SocNSoc). The continuous line represents a
Iincar fitting of the dataset.
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Moreover, q> is also related to the strength of the selection
at population level, not only for the trivial fact that it is
subjected to selection in certain conditions, but even for the
fact that these conditions are realized just because the
selection has already acted in order to remove from the
population those individuals with non adaptive behavior.

Not only a high value of q> is not per se adaptive, but the
same is true for the social modality of learning, i.e. (J) equal
to 1. Figure 8 shows the difference, through time, between
the average life span of social individuals that belong to a
social population (SocSoc) and the average life span of
social individual that belong to a non-social population
(SocNSoc) in the same experimental condition (energy loss
5.0).

A first thing to notice is that most of the points of the plot
layover the dashed line, that is, in general that difference is
positive. This result indicates that SocSoc tend to live longer
than SocNSoc. Therefore, being a social individual is more
adaptive in a social population than in a non-social one.

Even more interesting is the dynamic through time of this
dataset. The amount of the difference, in fact, increases
significantly through time (Spearman's rho = 0.57, P <
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Many aspects of the simulation, in fact, can be modified in
order to add complexity and degrees of freedom to the
parameters we take into account. Major transitions in the
obtained results are expected, e.g., by linking the adaptive
pressure provided by the environment, i.e. the energy loss,
to the other characteristics of the behavior of robots. If, for
example, the amount of adaptive pressure directly depends
on the number of robots in the same area, how will this
characteristic affect the ratio between social and non-social
individuals in the populations? In that situation, is it always
the best solution to learn faster?

Other possible improvements are related to the different
modalities that regulate the social interaction between
robots. In this work, for example, robots located in a target
area always emit a continuous signal. What does it happen if
the robots can modulate on their own the emission of the
signal? Under what condition will we observe, if any, the
emergence of selfish robots, i.e. robots that exploit social
information without providing social information to others,
within a population?

Moreover, the idea that robots might self-regulate their
communication activities, and in tum social interactions,
open new perspectives in the development of language-like
communication acts that might refer both to environmental
and social features. Such additional level of complexity will
require additional skills for the agents, that would be
capable of flexible and scalable categorisation abilities, in
order to interact fruitfully with the physical and social
environment.

We think that an approach based upon the theory of
Neural Modeling Fields [27] could endow the robots of the
necessary flexibility and scalability required to deal with the
difficult task of merging many different sensory information
and use the outcome of such a fusion to improve robots
abilities to categorise the world and to communicate about
it.

Cangelosi and colleagues [28] have already shown the
applicability of the Neural Modeling Fields in the language
and cognition integration domain. On the same perspective,
the presented set up allows to test and extend the range of
applicability of the theory to a different level of complexity,
less focused on the scaling up of individual capabilities,
such as actions and language, rather more focused on the
social dimension.
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