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Abstract 

 

During the 2020 US presidential election, conspiracy theories about large-scale voter fraud were 
widely circulated on social media platforms. Given their scale, persistence, and impact, it is critically 
important to understand the mechanisms that caused these theories to spread so rapidly. The aim of 
this study was to investigate whether retweet frequencies among proponents of voter fraud 
conspiracy theories on Twitter during the 2020 US election are consistent with frequency bias, 
demonstrator bias, and/or content bias. To do this, we conducted generative inference using an 
agent-based model of cultural transmission on Twitter and the VoterFraud2020 dataset. The results 
show that the observed retweet distribution is consistent with a strong content bias and demonstrator 
bias, likely targeted towards negative emotion and follower count, respectively. Based on the 
confounding effects of the timeline algorithm and population structure, we are most confident in 
concluding that the differential spread of voter fraud claims among proponents of voter fraud 
conspiracy theories on Twitter during and after the 2020 US election was partly driven by a content 
bias causing users to preferentially retweet tweets with more negative emotion. 
 Keywords: voter fraud, conspiracy theory, social media, transmission bias, negative emotion 

 
Introduction 
 

Allegations of malign acts, carried out in secret by powerful groups, have been offered as explanations for major events 
throughout history, from ancient Rome, through the medieval period, to the present day (Brotherton, 2015; Pagán, 2020; 
Zwierlein, 2020). People across the globe have shared these conspiracy theories (Butter & Knight, 2020; West & 
Sanders, 2003). Conspiracy theories have been a part of North American culture since the colonial period, with beliefs 
about conspiring, “un-American” groups of witches, enslaved Africans, Masons, Catholics, and Jews dominating early 
versions (Olmsted, 2018). Later, in the twentieth century, the focus shifted towards the US government itself as the 
source of conspiring agents (Olmsted, 2018). 

Conspiracy theories are typically defined as explanations of important events which allege secret plots by 
powerful actors as salient causes (Douglas et al., 2019; Goertzel, 1994; Keeley, 1999). Belief is not inherently irrational 
(as conspiracies do occur; see Dentith, 2014; Pigden, 1995), but conspiracy theories (as opposed to simply conspiracies) 
are allegations that survive and spread despite a lack of reliable evidence (Douglas et al., 2019; Keeley, 1999). Belief in 
conspiracy theories is associated with reduced engagement with mainstream politics (Imhoff et al., 2020; Jolley & 
Douglas, 2014), increased support for political violence and extremism (Imhoff et al., 2020; Uscinski & Parent, 2014), 
and increased prejudice towards minority groups (Jolley et al., 2020; Kofta et al., 2020). 
 A range of recent and ongoing conspiracy theories allege that the result of the 2020 US presidential election 
was achieved through large-scale electoral fraud (Enders et al., 2021). Building on allegations of voter fraud made prior 
to the 2016 election (Cottrell et al., 2018) and years of Republican messaging about electoral fraud and illegal voting 
(Edelson et al., 2017), these conspiracy theories were widely circulated on social media platforms like Twitter. Major 
political and public figures, including US President Donald Trump, boosted these theories using hashtags like 
#stopthesteal (Sardarizadeh & Lussenhop, 2021) and eventually had their accounts suspended for incitement of violence 
following the January 6th attack on the US Capitol (Conger & Isaac, 2021). More specific claims, such as hacked voting 
machines being programmed in favor of then-Presidential Candidate Joe Biden and large numbers of ballots being 
thrown out in trash bags (Cohen, 2021; Spring, 2020) have been used to justify election audits and tighter voting laws in 
states like Arizona (Cooper & Christie, 2021) and Georgia (Corasaniti & Epstein, 2021). The Justice Department has 
found “no evidence of widespread voter fraud” (Balsamo, 2020), and the Cybersecurity and Infrastructure Security 
Agency concluded that 2020 was “the most secure election ever” (Tucker & Bajak, 2020). Despite this, polls suggest that 
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up to a third of Americans (Cillizza, 2021) and the majority of Republicans (Skelley, 2021) believe that Biden won the 
election illegitimately through voter fraud. Exposure to such claims has been shown to reduce confidence in democratic 
institutions (Albertson & Guiler, 2020) and is thought to have contributed to motivating the US Capitol attack (Beckett, 
2021). Given the scale, persistence, and impact of voter fraud conspiracy theories, it is critically important to understand 
the mechanisms that caused them to spread so rapidly and widely. 

While conspiracy theories, as everything else, are disseminated through social media, the nature of the 
association between social media usage and conspiracy theory belief is an open question (Enders et al., 2021; Hall 
Jamieson & Albarracín, 2020; Min, 2021; Stempel et al., 2007). Social media does provide, however, a source of data that 
can be used to test theories about their spreading. Most studies have focused on the content of social media posts, 
highlighting how negative content (Schöne et al., 2021), emotional content (Brady et al., 2017), or out-group derogation 
(Osmundsen et al., 2021; Rathje et al., 2021) tend to be associated with their spreading. However, content is only one of 
the possible features that influence the success of a social media post. In what follows, we use a framework inspired by 
cultural evolution that allows us to distinguish among various features and assess their relative importance. 

Broadly, cultural evolution adopts an evolutionary framework to research the stability, change and diffusion of 
cultural traits (Mesoudi, 2011). Transmission biases—biases in social learning that cause individuals to adopt some 
cultural variants over others—are thought to be some of the most important factors driving cultural evolutionary 
patterns (Kendal et al., 2018). According to this perspective, the probability that a behavior will be adopted is influenced 
by various cues. Frequency bias, which includes conformity and novelty bias, is when the frequency of a variant in the 
population disproportionately affects its probability of adoption. Content bias is when the inherent characteristics of a 
variant affects its probability of adoption. Demonstrator bias is when some characteristic of the individuals expressing a 
variant affects its probability of adoption (see review in Kendal et al., 2018). Importantly, transmission biases can lead to 
discernible changes in the cultural frequency distributions of populations (Lachlan et al., 2018). For example, in the 
context of Twitter, a positive frequency bias (i.e. conformity) would cause users to be more likely to retweet content that 
has already been heavily retweeted by other users, thus increasing the right skew of the overall retweet distribution. This 
framework allows us to consider both individual susceptibility and the influence of social context on wider population 
level patterns. 
 Using generative inference, it is possible to infer the underlying cognitive biases of individuals in a population 
from the cultural frequency distribution that they generate. Generative inference is a statistical procedure in which a 
model is run many times with varying parameter values to generate large quantities of simulated data. This simulated data 
is then compared to real data using approximate Bayesian computation (ABC) to infer the parameter values that likely 
generated it (Kandler & Powell, 2018). Carrignon et al. (2019) recently applied generative inference to the spread of 
confirmed and debunked information on Twitter and found that the retweet distributions of both were more consistent 
with random copying than with conformity. However, their model did not include parameters for demonstrator bias and 
did not explore the influence of content bias due to computational limitations (Carrignon et al., 2019). 

The aim of this study is to investigate whether retweet frequencies among proponents of voter fraud 
conspiracy theories on Twitter during the 2020 US election are consistent with frequency bias, demonstrator bias, 
and/or content bias. To do this, we conducted generative inference using an agent-based model (ABM) of cultural 
transmission on Twitter that combines elements from Carrignon et al. (2019), Lachlan et al. (2018), and Youngblood and 
Lahti (2021). Our ABM simulates a fully-connected population of Twitter users with randomly-assigned follower counts 
and activity levels from the real data. Every six hours, a subset of users become active and either compose a new tweet 
or retweet an existing tweet. The probability of an existing tweet being retweeted is based on four factors: (1) how many 
times it has already been retweeted, (2) the attractiveness of the user who tweeted it (e.g. follower count or verification 
status), (3) the attractiveness of the content in the tweet (e.g. emotional valence and/or intensity), and (4) the age of the 
tweet. The influence of each of these factors on retweet probability is controlled by separate parameters which 
correspond to frequency bias, demonstrator bias, content bias, and age dependency, which we fitted to real data using 
the random forest version of ABC (Raynal et al., 2019). 
 The data used in this study comes from a team of researchers at Cornell Tech, who retrieved millions of tweets 
and retweets relating to voter fraud conspiracy theories between October 23 and December 16 of 2020 (Abilov et al., 
2021). After iteratively building a set of search terms from the seeds “voter fraud” and #voterfraud and using them to 
collect data in real-time, they estimate that they collected ~60% of tweets about voter fraud conspiracy theories during 
that period. An anonymized version of the VoterFraud2020 dataset is publicly available1, and Abilov et al. (2021) 
generously provided us with access to their full disambiguated dataset. Importantly, this dataset includes tweets from 
users who were “purged” from Twitter following the US Capitol attack (Romm & Dwoskin, 2021). 
 Additionally, we conducted secondary analyses with general linear mixed models (GLMM) to assess the 
potential targets of content or demonstrator biases. The emotional content of tweets was measured using sentiment 

 
1 https://voterfraud2020.io/ 
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analysis, whereas demonstrator attractiveness was based on follower count and whether the account holder was verified. 
Twitter verifies some accounts to make sure they are authorized by the person they claim to represent, but only 
undertakes this costly verification for high-profile accounts—in practice a small but highly influential minority, whose 
status is signaled by a “blue check mark” icon. Sentiment analysis was conducted using the valence aware dictionary and 
sentiment reasoner (VADER), a model trained for use with Twitter and other social media data (Hutto & Gilbert, 2014). 
A large body of research suggests that content with negative sentiment has an advantage over content with positive 
sentiment across several domains (Baumeister et al., 2001; Rozin & Royzman, 2001). In digital media, evidence of 
negative bias has been suggested for “fake news” articles (Acerbi, 2019), within online “echo chambers” (Asatani et al., 
2021; Del Vicario et al., 2016), and for tweets about political events both from individual users (Schöne et al., 2021) and 
institutions (Bellovary et al., 2021). Other studies have suggested that just the strength of emotion influences the 
transmission of content on social media (Brady et al., 2017; Stieglitz & Dang-Xuan, 2013; but see critiques in Burton et 
al., 2021), and, in two experimental studies, van Prooijen et al. (2021) found that the appeal of conspiracy theories was 
associated with the intensity of emotion evoked, rather than the valence of that emotion. 
 Demonstrator bias often manifests as a tendency to copy or adopt the behaviors of successful and/or 
prestigious demonstrators (Henrich & McElreath, 2003; Kendal et al., 2018), with prestige typically operationalized as 
being indicated by increased attention or deference (Jiménez & Mesoudi, 2019). In social media, Bakshy et al. (2011) 
found, for example, that the success of a tweet was correlated with the number of followers of the author of the tweet. 
Other research suggests that high profile political and media figures played a central role in the diffusion of voter fraud 
conspiracy theories (Benkler et al., 2020). 

Based on this research, if content bias is detected, then we hypothesize that it will be targeted towards stronger 
emotional content, but we remain agnostic as to the direction of the emotion (positive or negative). If demonstrator bias 
is detected, then we hypothesize that it will be targeted towards accounts that are verified or have more followers (i.e. 
receive more attention). 
 

Results 
 

The VoterFraud2020 dataset is divided into several sub-communities, including both detractors and proponents of the 
conspiracy theories. We chose to focus on cluster #2, the “proponent” community that tweets and retweets content in 
English and does not have significant connections to the “detractor” community (see Methods). After subsetting the 
VoterFraud2020 data to only include user and tweet data from cluster #2, we ended up with 3,982,990 tweets from 
341,676 users. Note that we calculated the number of users as all unique users that either tweeted or retweeted content 
from cluster #2.  The agent-based model was initialized with a population size (N) of 341,676 and an original tweet 
probability (µ) of 0.45, based on the proportion of original tweets in the dataset. The model and methods were 
preregistered in advance of the analysis (see Methods). 

The posterior distributions for content bias (c), demonstrator bias (d), frequency bias (a), and age dependency 
(g) can be seen in Figure 1 and Table 1. Higher values of c, d, and g are indicative of stronger effects of those parameters, 
where 0 is neutrality. Values of a that are lower and higher than 1 are indicative of novelty and conformity bias, 
respectively, where 1 is neutrality. The median estimate for content bias is 2.61, with a relatively wide 95% credible 
interval (CI) that spans from 0.4 to 4.68. This indicates that content bias plays a significant role in driving retweet 
frequencies, but that its effect is either difficult to estimate or varies among users. The posterior distribution for 
demonstrator bias, on the other hand, has a strong peak at 2.21 with a tight 95% CI and low prediction error. This 
indicates that demonstrator bias also drives retweet frequencies to a similar degree, and that its effect is much more 
predictable and stable. The median estimate for frequency bias is 0.29, with an extremely wide 95% CI that is strongly 
right-skewed towards zero. If we assume that neutrality in frequency bias is a = 1, where retweet probability is perfectly 
proportional to the number of times a tweet has already been shared, then this result is indicative of a strong novelty 
bias. However, we feel that a novelty bias of this magnitude is unrealistic, and that this result instead suggests that 
retweet probability is mostly decoupled from the number of times a tweet has already been shared (so neutrality is a = 
0). This is much more consistent with our personal experiences on Twitter, where the timeline includes a balance of new 
tweets from followers and trending tweets that have already been heavily retweeted. According to this interpretation, the 
wide 95% CI for a could reflect departures from neutrality resulting from conformity bias, variation in user behavior, or 
how Twitter’s timeline algorithm weights trending tweets. The posterior distribution for age dependency is wide and 
chaotic but generally left-skewed, suggesting that newer tweets may have an advantage in terms of retweet probability. 

Importantly, the details of Twitter’s timeline algorithm are not publicly available, which means that it is not 
statistically possible for us to differentiate between a bias produced by the algorithm or user behavior. This issue is most 
relevant for the results related to demonstrator and frequency bias, as follower and retweet count are the two cues most 
likely utilized by Twitter’s timeline algorithm (Koumchatzky & Andryeyev, 2017). 
 
 



4 

 

 M 95% CI NMAE 
c 2.61 [0.40, 4.68] 1.22 
d 2.21 [1.69, 2.50] 0.083 
a 0.29 [0.014, 0.84] 1.64 
g 5.61 [0.60, 7.87] 3.26 

 

Table 1. The median, 95% credible interval, and out-of-bag normalized mean absolute error of the posterior distribution for each dynamic parameter in 
the agent-based model. 
 

 
 

Figure 1. The prior (dotted lines) and posterior (solid lines) distributions for each of the four dynamic parameters from the ABM that were estimated 
using ABC. 
 

Based on the null models for the GLMM, user appears to be the only grouping variable that explains a high 
level of variance in the data (ICCuser = 0.61, ICCdate = 0.11, ICChour = 0.04). As such, we chose to include user as a 
random effect in our base model. Adding tweet length as a control variable improved model fit (ΔAIC = 40803; LRT: χ2 
= 40805, p < 0.0001). Both follower count and verification status further improved model fit (ΔAIC > 2), but the model 
with follower account was significantly better (ΔAIC = 6217; LRT: χ2 = 6217, p < 0.0001) so we updated our base 
model accordingly. All three content measures further improved model fit (ΔAIC > 2), but the model with the 
proportion of negative words was significantly better than the models with the proportion of positive words (ΔAIC = 
460; LRT: χ2 = 460, p < 0.0001) or the compound score (ΔAIC = 815; LRT: χ2 = 815, p < 0.0001). All model 
specifications and AIC values for the primary GLMM are in Table S3, along with a partial specification curve analysis in 
Figure S5. The best fitting model included user as a random effect, and tweet length, follower count, and the proportion 
of negative words as predictor variables (see Table 2). 
 

 IRR 95% CI 
Tweet length 1.470 [1.468, 1.471] 

Follower count 1.509 [1.499, 1.519] 
Proportion negative 1.057 [1.055, 1.058] 

 

Table 2. The incidence rate ratio (IRR) and 95% confidence interval for each predictor in the best fitting model. IRR, the exponentiated beta estimate, 
is interpreted as the rate at which the outcome variable is expected to change per unit increase in a predictor (one standard deviation for scaled and 
centered predictors). Wald confidence intervals were used due to the high sample size. 
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 Tweet length, follower count, and the proportion of negative words all have significant effects on retweet 
frequency (Table 2). The incidence rate ratio (IRR) for tweet length is 1.470, indicating that if a tweet is one standard 
deviation (SD) longer then it is 47.0% more likely to be retweeted. Follower count has a similarly strong effect, where 
tweets from users with one SD more followers are 50.9% more likely to be retweeted. The IRR for the proportion of 
negative words is much lower but still significant. Tweets with a proportion of negative words that is one SD higher are 
5.7% more likely to be retweeted. Pseudo R2 values, calculated using log-normal approximation, indicate that the 
predictor variables alone account for about 10% of the variance in the data (R2 = 0.099), whereas the predictor variables 
and random effects together account for about 68% of the variance in the data (R2 = 0.68) (Nakagawa et al., 2017). A 
variance inflation factor test indicates that there are no significant issues with multicollinearity between predictors (VIFs 
< 2). Residual diagnostics for the best fitting model indicate that, while there are some extreme low and high outliers, the 
Poisson family is appropriate and there are no significant problems with overdispersion (see Figure S6). 
 An additional GLMM found that quote tweets tend to have reduced negative emotion relative to the original 
tweets that they are quoting (see SI). This lends support to our generative inference results, given our decision to treat 
quote tweets like original tweets when computing retweet distributions (see Methods). If quote tweets tend to be less 
attractive than original tweets, then our estimate for content bias is likely more conservative than it would have been if 
we had treated quote tweets like retweets instead of original tweets.  
 

Discussion 
 

Based on the results of generative inference, the observed retweet distribution is consistent with a strong content bias 
and demonstrator bias. Tweets with a higher ratio of negative words and from users with more followers are more likely 
to be retweeted, suggesting that these biases are targeted towards negative emotion and follower count, respectively. For 
frequency bias, the results of generative inference could be interpreted as evidence for either an extremely strong novelty 
bias or for frequency information being irrelevant. We feel that a novelty bias of this magnitude is unrealistic, and we 
interpret this result as evidence that retweet probability is mostly decoupled from the number of times a tweet has 
already been retweeted. Interestingly, we also found that quote tweets tend to contain less negative emotion than their 
targets. This means that users, despite having a content bias for negative emotion, do not tend to amplify negativity 
when commenting on a retweet. 

Importantly, the results for demonstrator bias and frequency bias are difficult to separate from the influence of 
Twitter’s timeline algorithm, which is heavily based on user characteristics and engagement (Koumchatzky & Andryeyev, 
2017). Additionally, we followed Carrignon et al. (2019) in using a fully-connected population for the ABM so that, 
under neutral conditions, users in our model were not more likely to encounter content from users with high follower 
counts. As in previous studies, this means that it is difficult to disentangle the effect of “influence” from pure availability, 
or the fact that a tweet coming from a user with many followers will simply have more exposure (Bakshy et al., 2011; 
Benkler et al., 2020). Even if we had access to the follower network of these users, the relevance of it would depend 
upon user behavior. If users primarily share information that they see passively on their timeline, then population 
structure is much more important, whereas if users are searching with keywords and hashtags, then it is less so. Since we 
do not have access to the follower network, and since many users interested in voter fraud conspiracy theories were 
probably actively searching for content related to those theories with keywords and hashtags, we believe that a fully-
connected population is a reasonable simplifying assumption for this study. Based on the confounding effects of the 
algorithm and population structure, we are most confident in concluding that the differential spread of voter fraud 
claims among proponents of voter fraud conspiracy theories on Twitter during and after the 2020 US election was partly 
driven by a content bias causing users to preferentially retweet tweets with more negative emotion. 

Our results are consistent with previous work suggesting that emotionally negative content has an advantage on 
social media across a variety of domains, including “fake news” articles, climate change coverage, and political events 
(Acerbi, 2019; Asatani et al., 2021; Bellovary et al., 2021; Del Vicario et al., 2016; Schöne et al., 2021). Other studies, 
though, have shown that positive messages spread more slowly but reach more people (Ferrara & Yang, 2015b), that 
exposure to both positive and negative tweets increases the probability of a user tweeting content with similar emotional 
valence (Ferrara & Yang, 2015a), and that tweets with greater emotional intensity (independent of valence) are more 
likely to be retweeted (Brady et al., 2017; Stieglitz & Dang-Xuan, 2013). In such cases, there may be variation across 
domains and individuals. Messages about same-sex marriage, for example, are more likely to be retweeted if they use 
positive language, whereas messages about climate change are more likely to be retweeted if they use negative language 
(Brady et al., 2017). We suspect that conspiracy theory content generally falls into the latter category. Similarly, Ferrara 
and Yang (2015a) found that there is variation in how users respond to emotional content, where some “highly 
susceptible” users are more likely to be influenced by positive messages. To improve the robustness of modeling of 
emotional contagion on social media, Burton et al. (2021) recently came up with three recommendations for future 
studies: going beyond correlational evidence, analyzing the effect of specification decisions on model estimates, and 
preregistration. We fully agree with these recommendations, and we hope that we adequately addressed them by using a 
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preregistered generative inference framework to ensure that the data was consistent with transmission bias before 
conducting GLMM and ensuring that our estimates were robust across a reasonable range of modeling specifications. 

Regarding the spread of conspiracy theories, previous research has proposed “herd behavior”, in which rational 
individuals with limited information defer to the beliefs of the majority, to be a potential explanation (Sunstein, 2014a, 
2014b). Our study addresses the differential sharing of conspiracist tweets among proponents, who presumably already 
believed some voter fraud claims before the election took place, but our lack of clear evidence for a frequency bias 
suggests that a disproportionate tendency to “follow the herd” may not be the primary driver of the spread of conspiracy 
theory messages. Rather, our study suggests that the content of conspiracy theory messages and the characteristics of the 
individuals sharing those messages are more salient cues for cultural transmission. While recognized as important, the 
transmission processes involved in the spread of conspiracy theories have received relatively little attention in research 
and are not well understood (Bangerter et al., 2020). This study demonstrates the value of cultural evolutionary 
approaches for understanding these transmission processes, and it highlights the importance of considering the roles of 
both the content of conspiracy theories and the context in which they are shared. Identifying and characterizing the 
biases influencing the transmission of conspiracy theories can help us to generate potential methods for countering the 
spread of harmful conspiracy theories and promoting the spread of genuine information (see Salali & Uysal, 2021). 

A previous study using generative inference to investigate behavior on Twitter found that retweet patterns of 
both confirmed and debunked information were more consistent with unbiased random copying than with conformity 
(Carrignon et al., 2019). At first glance our study seems to contradict this result, but Carrignon et al. (2019) did not 
include a parameter for demonstrator bias in their agent-based model, and they assumed neutrality for content bias due 
to computational limitations. When we ran our agent-based model with neutral values for both content bias and 
demonstrator bias, we too found that the model best fit the observed data when copying was unbiased by frequency (see 
Figure S1 and Table S2). The discrepancy between the results when parameters are estimated together instead of 
individually highlights the importance of considering equifinality—the fact that different processes can lead to similar 
patterns at the population level (Barrett, 2019). If different processes lead to only subtle differences in retweet 
frequencies, then the effect of one could be mistakenly attributed to another if both are not considered simultaneously. 
Luckily, in our study we found that the observed retweet distribution was consistent with content bias when content bias 
was estimated both alongside other parameters (Figure 1 and Table 1) and in isolation (Figure S1 and Table S2). 

One of our biggest takeaways from this study is the importance of algorithmic transparency and accountability 
(Matei et al., 2015; Shah, 2018). Without access to detailed information about recommendation algorithms, researchers 
will continue to face difficulty in constructing realistic null models and making inferences about behavior on social 
media. Given that Twitter’s timeline algorithm uses deep learning (Koumchatzky & Andryeyev, 2017) it is likely 
impossible for them to simply make the details of it public. Instead, the company could try to infer how the algorithm 
boosts different kinds of content by running natural experiments on the platform, as has been recently done for racial 
and gender bias in the image cropping algorithm (Agrawal & Davis, 2020) and right-leaning political bias in the timeline 
algorithm (Huszár et al., 2021). For example, Twitter could publish the results of a model in which simulated users 
randomly share information from simulated timelines constructed by the algorithm to see how different kinds of content 
spread under neutral conditions. Luckily, algorithmic transparency and accountability are increasingly being viewed as 
public policy priorities by governments around the world23. We hope that future studies can take advantage of improved 
transparency to develop more effective policy recommendations for fighting the spread of conspiracy theories and 
disinformation on social media platforms. 

In conclusion, our methodology, based on a cultural evolution framework, allowed us to weigh the relative 
importance of different features influencing the spread of voter fraud claims among conspiracy theorists on Twitter. 
Most importantly, we found that retweet frequencies of voter fraud messages posted during and after the 2020 US 
election are consistent with a demonstrator bias for users with many followers and a content bias for tweets with more 
negative emotion. We are most confident with the latter finding given the confounding effects of Twitter’s proprietary 
timeline algorithm and the platform’s population structure. While previous research focused a priori on the role of 
tweets’ content, we were able to show that content is indeed central when compared with other possible mechanisms of 
social influence. The methods presented here can be easily applied to other datasets and even expanded with a wider 
range of possible biases depending on the model in question. 
 

Methods 
 

The data for this study comes from the VoterFraud2020 dataset, collected between October 23 and December 16 of 2020 
by Abilov et al. (2021). This dataset includes 7.6 million tweets and 25.6 million retweets that were collected in real time 
using Twitter’s streaming API. The VoterFraud2020 dataset was collected according to Twitter’s Terms of Service and is 

 
2 https://www.congress.gov/bill/117th-congress/senate-bill/1896/text 
3 https://op.europa.eu/en/publication-detail/-/publication/8ed84cfe-8e62-11e9-9369-01aa75ed71a1 
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consistent with established academic guidelines for ethical social media data use (Abilov et al., 2021). Abilov et al. (2021) 
started out with a set of keywords and hashtags that co-occurred with “voter fraud” and #voterfraud between July 21 
and October 22, and expanded their search with additional keywords and hashtags as they emerged (e.g. 
#discardedballots and #stopthesteal). They estimate that their dataset includes at least 60% of tweets that included their 
search terms. Abilov et al. (2021) also applied the infomap clustering algorithm to the directed retweet network to 
identify different communities that engaged with voter fraud conspiracy theories. We ran our analysis using only the user 
and tweet data from cluster #2, the “proponent” community that tweets primarily in English and does not have 
significant connections to members of the “detractor” community. We restricted our analysis to cluster #2 so that 
retweets would be indicative of the spread of the conspiracy theories among proponents, as opposed to discourse and 
debate between both proponents and detractors. 

The agent-based model (ABM) we used has elements from Carrignon et al. (2019), Lachlan et al. (2018), and 
Youngblood and Lahti (2021), and is available as an R package on GitHub4. The ABM is initialized with a fully-
connected population of N users and is run for 216 timesteps, each of which correspond to a six-hour interval in the real 
dataset (the highest resolution possible given computational limits). Each user is assigned a follower count (T) and an 
activity level (r) drawn randomly from the observed data. T is scaled with a mean of 1 and a standard deviation of 1. 
Follower counts greater than or equal to 100,000 (0.087%) were excluded, as they flatten nearly all variation in T after 
scaling. The ABM is also initialized with a set of tweets with retweet frequencies drawn randomly from the first timestep 
in the observed data. Each tweet is assigned an attractiveness (M). At the start of each timestep, a pseudo-random subset 
of users becomes active (weighted by their values of r) and tweets according to the observed overall level of activity in 
the same timestep. All active users have the same probability of tweeting an original tweet (µ) as opposed to retweeting 
an existing tweet (1 - µ), based on the proportion of original tweets in the real dataset. New original tweets are assigned 
an attractiveness of M, while retweets occur with probability P(x): 
 

𝑃(𝑥) = 𝐹!" ∙ 𝑇!# ∙ 𝑀!
$ ∙

1
𝑎𝑔𝑒!

% 
 

F is the number of times that a tweet has been previously retweeted, and is raised by the level of frequency bias (a). a is 
the same across all agents, where values > 1 simulate conformity bias and values < 1 simulate novelty bias. T is raised by 
the level of demonstrator bias (d). d is the same across all agents, where values of 0 simulate neutrality by removing 
variation in follower count and values > 0 simulate increasing levels of demonstrator bias. M is the attractiveness of the 
tweet, and is drawn from a truncated normal distribution with a mean of 1, a standard deviation of 1, and a lower bound 
of 0. M is raised by the level of content bias (c). c is the same across all agents, where values of 0 simulate neutrality by 
removing variation in the attractiveness of content and values > 0  simulating increasing levels of content bias. The final 
term simulates the decreasing probability that a tweet is retweeted as it ages, where g controls the rate of decay. Once the 
active users are done each tweet increases in age by 1 and the next timestep begins. Lastly, we should note that we chose 
to exclude “top n” dynamics (e.g. trending topics) from our ABM, because we think they are unlikely to influence the 
spread of more fringe topics within a single community and they did not improve the fit of neutral models of cultural 
transmission on Twitter in Carrignon et al. (2019). 

In summary, the following are the dynamic parameters in this ABM that we estimated using approximate 
Bayesian computation (ABC): 

● a - level of frequency bias 
● d - variation in the salience of follower count 
● c - variation in the salience of the attractiveness of content 
● g - rate of decay in tweet aging 

All other parameters in the ABM were assigned static values based on the real dataset. The output of this ABM is a 
distribution of retweet frequencies (see Figure 2), which was used to calculate the following summary statistics: (1) the 
proportion of tweets that only appear once, (2) the proportion of the most common tweet, (3) the Hill number when q 
= 1 (which emphasizes more rare tweets), and (4) the Hill number when q = 2 (which emphasizes more common 
tweets). We used Hill numbers rather than their traditional diversity index counterparts (Shannon’s and Simpson’s 
diversity) because they are measured on the same scale and better account for relative abundance (Chao et al., 2014; 
Roswell et al., 2021). 

The same summary statistics were calculated from the observed retweet distribution of the real dataset. For 
purposes of the summary statistic calculations quote tweets were treated like original tweets, as they themselves can be 
retweeted. Then, the random forest version of ABC (Raynal et al., 2019) was conducted with the following steps: 

 
4 https://github.com/masonyoungblood/TwitterABM 
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● 200,000 iterations of the ABM were run to generate simulated summary statistics for different values of the 
parameters: c, a, d, and g. 

● The output of these simulations were combined into a reference table with the simulated summary statistics as 
predictor variables, and the parameter values as outcome variables. 

● A random forest of 1,000 regression trees was constructed for each of the four parameters using bootstrap 
samples from the reference table. Two summary statistics were randomly sampled for each split in the decision 
trees, and the optimal minimum node size yielding the lowest prediction error for each parameter was set using 
the tuneRanger package in R (Probst et al., 2019) (see Table S1). 

● Each trained forest was provided with the observed summary statistics, and each regression tree was used to 
predict the parameter values that likely generated the data. 

Uniform prior distributions were used for all four of the dynamic parameters: c = {0–8}, a = {0–2}, d = {0–8}, g = {0–
8}. We plotted the first two principal components of the output from 10,000 iterations to ensure that we were capturing 
enough of the parameter space before running the full analysis (see Figure S3). We ran four additional rounds of the 
ABM, each with only a single term from the probability function included, to investigate the behavior of each parameter 
in isolation (see Figure S1, Figure S2, and Table S2). We also conducted posterior checks by running the agent-based 
model with parameter values drawn from the posterior distributions to see how closely the output matched the original 
data (see Figure S3 and Figure S4). 
 

 
 

Figure 2. The retweet distributions resulting from conformity, novelty, content, and demonstrator bias using this ABM (100 iterations each), alongside 
the observed retweet distribution (in black). Biases were all modelled with a g of 0.25 and the following parameter values: a = 1.4 (conformity), a = 0.6 
(novelty), c = 1 (content), and d = 1 (demonstrator). The x-axis (the identity of each tweet) and the y-axis (the number of times each tweet was 
retweeted) have been log-transformed. 
 

Sentiment analysis was conducted using VADER from the natural language toolkit in Python, a model that 
performs similarly to human raters when applied to social media posts from platforms like Twitter (Hutto & Gilbert, 
2014). VADER assigns a valence score to each word (and emoji or emoticon) in a tweet, and weights those scores 
according to a set of rules (e.g. negation, capitalization, punctuation). The main output of VADER is a compound score 
that sums and normalizes the weighted valences of the words in a tweet to give an overall score that indicates both the 
direction and the strength of emotion between -1 (strongly negative) and +1 (strongly positive). VADER also outputs 
the proportion of words in a tweet that are identified as neutral, positive, or negative. VADER was specifically trained to 
handle URLs, hashtags, and tagged users during sentiment analysis so we did not remove those from our dataset. Up-to-
date details about VADER can be found in the GitHub repository5. 

To determine the potential targets of content and demonstrator biases we conducted GLMM using the lme4 
package in R (Bates et al., 2015). Retweet frequency was used as the outcome variable. To determine which grouping 
variables would be suitable as random effects we ran separate null models with each and calculated the intraclass 
correlation coefficient (ICC), or the proportion of the variance in retweet frequency explained by the grouping levels of 

 
5 https://github.com/cjhutto/vaderSentiment 
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each variable. Once random effects were chosen we added predictor variables in three stages, using the Akaike 
information criterion (AIC) and likelihood-ratio test (LRT) to choose between competing models. First, we determined 
whether tweet length would be an appropriate control variable. Then, we added follower count and verification status to 
see which measure of demonstrator attractiveness best improves the model. The 1.9% of tweets from users with missing 
verification statuses and follower counts were assigned verification statuses of “false” and follower counts of 0. Finally, 
we added the compound score, the proportion of negative words, and the proportion of positive words to see which 
measure of content best improves the model. All predictor variables were scaled and centered prior to analysis. Model 
choice and residual diagnostic tests were conducted using a random 10% of observations, but the best fitting model was 
run using the entire dataset. The Poisson family was used since our outcome variable was count data and did not appear 
to have over- or underdispersion issues. 
 To ensure that our decision to treat quote tweets like original tweets did not bias our results related to content, 
we did a second round of GLMM to determine whether quote tweets have different emotional content than the original 
tweets that they are quoting. We refer to original tweets that are quoted as target tweets (i.e. targets), and the tweets that 
quote them as quote tweets (i.e. quotes). Here we only considered target and quote tweets from cluster #2. Whether a 
tweet was a target (0) or a quote (1) was used as the outcome variable, and the identity of each target tweet was used as a 
random effect. In other words, each target and all of its quotes were assigned the same random effect. Like above, we 
first added tweet length as a control variable (for both targets and quotes). Then, we added the compound score, the 
absolute value of the compound score, the proportion of negative words, the proportion of positive words, and the 
proportion of neutral words as predictor variables to see which measure of content best improves the model. The 
absolute value of the compound score and the proportion of neutral words were included as indicators of a general 
reduction in the intensity of emotion independent of positive or negative valence. All predictor variables were scaled and 
centered prior to analysis, and model choice and residual diagnostic tests were conducted using all observations. 
 

Preregistration 
 

Our complete methods, model, and predictions were preregistered in advance of data analysis (https://osf.io/jnvyf/), except for the post hoc 
comparison between tweets and quote tweets. 
 

Data & Code Availability 
 

The agent-based model, analysis code, and processed data used in this study can be found on GitHub: 
https://github.com/masonyoungblood/TwitterABM. The full anonymized VoterFraud2020 dataset can be found on Abilov et al.’s website 
(https://voterfraud2020.io/), and the full disambiguated dataset with tweet text is available from Abilov et al. upon request. 
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Supplementary Information 
 

 Minimum node size MSE 
c 61 3.18 
d 150 1.10 
a 39 0.055 
g 47 2.15 

 

Table S1. The optimal minimum node size for the random forests for each of the four dynamic parameters in the ABM. 
 

 
 

Figure S1. The prior (dotted lines) and posterior (solid lines) distributions from four additional rounds of the ABM. Each round was run for 1,000 
iterations with only a single term from the probability function included. For example, panel A shows the posterior distribution for c when the ABM 
was run with uniform prior for c (from 0 to 8) with fixed neutral values for d (0), a (1), and g (0). In other words, panel A shows the estimated 
parameter values for c that best recreate the real data when all other parameters are ignored. Random forest ABC was conducted exactly as described in 
the main text. 
 

 M 95% CI NMAE 
c 1.09 [0.64, 1.48] 0.029 
d 0.43 [0.048, 0.85] 1.06 
a 1.07 [0.95, 1.13] 0.0068 
g 0.011 [0.011, 0.40] 2.44 

 
Table S2. The median, 95% credible interval, and out-of-bag normalized mean absolute error of the posterior distributions from the four additional 
rounds of the ABM. 
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Figure S2. The retweet distributions from four additional rounds of the ABM (100 iterations each), alongside the observed retweet distribution (in solid 
black). The dotted black lines show the distribution resulting from the lowest value of that parameter sampled from the prior, whereas the dashed 
black lines show the distribution resulting from the highest value of that parameter sampled from the prior. Most importantly, frequency bias and age 
dependency (arguably the two processes most likely to confound one another) lead to different patterns in the retweet distributions. 
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Figure S3. On the left, the first two principal components from 10,000 iterations of the model using the specified priors. We appear to be capturing 
more than enough of the parameter space to make inferences about our observed data, marked by the red star. On the right, the first two principal 
components from 1,000 iterations of the model with parameter values sampled from the posteriors. Importantly, the posterior distributions appear to 
have converged towards parameter values that do a much better job of recreating the observed data. 
 

 
 

Figure S4. The retweet distributions resulting from 1,000 iterations of the model with parameter values drawn from the posteriors, alongside the 
observed retweet distribution (in black). 
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Model specification df AIC 
retweets ~ (1|user) 2 1121395 
retweets ~ (1|day) 2 3907893 
retweets ~ (1|hour) 2 3919423 
retweets ~ scale(length) + (1|user) 3 1080592 
retweets ~ scale(followers) + scale(length) + (1|user) 4 1074232 
retweets ~ scale(verified) + scale(length) + (1|user) 4 1080449 
retweets ~ scale(compound) + scale(followers) + scale(length) + (1|user) 5 1072285 
retweets ~ scale(negative) + scale(followers) + scale(length) + (1|user) 5 1073100 
retweets ~ scale(positive) + scale(followers) + scale(length) + (1|user) 5 1073560 

 

Table S3. The model specification, degrees of freedom, and AIC for each candidate model for the primary GLMM (conducted with a random 10% of 
observations). 
 

 
 

Figure S5. A partial specification curve analysis for the primary GLMM (conducted with a random 10% of observations). Panel A (on the left) shows 
the IRRs for the effect of the proportion of negative words on retweet probability under different combinations of predictors that appeared in the best 
fitting model. Panel B (on the right) shows the same for the effect of followers. Error bars represent Wald confidence intervals which were used due to 
high sample size. The IRR for followers from the simplest model in B is absent because the model did not converge. In all specifications, the 
proportion of negative words and the number of followers have significant effects in the same direction as in the best fitting model. 
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Figure S6. A Q-Q plot (left) and a standardized residual plot (right) for the main GLMM, constructed using the DHARMa package in R (Hartig, 2020). 
The model appears to be a good fit, and a dispersion test indicates that there is no significant dispersion in the data (p = 0.73). That being said, there is 
a low level of significant outliers among residuals (outliers = 0.97%, p < 0.0001), and a Kolmogorov-Smirnov test indicates that the residuals do 
significantly deviate from uniformity (p < 0.0001). Based on a visual inspection of the Q-Q plot, and the fact that the creator of the DHARMa package 
has suggested that slight departures from uniformity can be significant when sample sizes are extremely high6, we conclude that the model is a good fit 
to the data. There is also a significant level of zero-inflation in the data (p < 0.0001), but the level of it is so low (2.2%) that we would prefer to use the 
Poisson family than to separately model zero and non-zero values. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
6 https://github.com/florianhartig/DHARMa/issues/181 
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Quote Tweet Analysis 
 

After further subsetting the tweets for the quote tweet analysis, we ended up with 91,227 original tweets and 383,778 
quote tweets from 102,227 users. The identity of each target tweet was included as a random effect (ICC = 0.15), and 
adding tweet length as a control variable significantly improved model fit (ΔAIC = 140971; LRT: χ2 = 140972, p < 
0.0001). All five content measures further improved model fit (ΔAIC > 2), but the compound score improved fit 
significantly better than all of the content measures (ΔAIC > 2). All model specifications and AIC values for the quote 
GLMM are in Table S4. The best fitting model for the quote tweet analysis included the identity of each quoting event as 
a random effect, and tweet length and the compound score as predictor variables. 
 

 OR 95% CI 
Tweet length 0.176 [0.173, 0.178] 

Compound score 1.865 [1.845, 1.884] 
 

Table S4. The odds ratio (OR) and 95% confidence interval for each predictor in the best fitting model. OR, the exponentiated beta estimate, is 
interpreted as the rate at which the outcome variable is expected to change per unit increase in a predictor (one standard deviation for scaled and 
centered predictors). Wald confidence intervals were used due to the high sample size. 
 

 Tweet length and the compound score both significantly predict whether a tweet is original or a quote. The 
odds ratio (OR) for tweet length is 0.176, indicating that if a tweet is one SD longer then it is 82.4% more likely to be an 
original tweet. In other words, quote tweets tend to be shorter than original tweets. The compound score, on the other 
hand, has a strong positive effect on the probability that a tweet is a quote. The OR of 1.865 indicates that tweets with a 
compound score that is one SD higher are 86.5% more likely to be a quote. In other words, quote tweets tend to be 
more positive than their targets that they are quoting. The next best fitting model, which included the proportion of 
words that are negative, outcompeted the models with the absolute value of the compound score and the proportion of 
words that are neutral (ΔAIC > 2). This suggests that the shift in the tone of quote tweets is driven by a reduction in 
negative emotion rather than a general reduction of all emotion independently of valence. Pseudo R2 values, calculated 
using the theoretical variances, indicate that the predictor variables alone account for about 47% of the variance in the 
data (R2 = 0.474), whereas the predictor variables and random effects together account for about 61% of the variance in 
the data (R2 = 0.607) (Nakagawa et al., 2017). A variance inflation factor test indicates that there are no significant issues 
with multicollinearity between predictors (VIFs < 2). Residual diagnostics for the best fitting model can be seen in 
Figure S7. 
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Model specification df AIC 
retweets ~ (1|event) 2 420624 
retweets ~ scale(length) + (1|event) 3 279654 
retweets ~ scale(compound) + scale(length) + (1|event) 4 264546 
retweets ~ scale(abs(compound)) + scale(length) + (1|event) 4 273125 
retweets ~ scale(negative) + scale(length) + (1|event) 4 269184 
retweets ~ scale(positive) + scale(length) + (1|event) 4 277239 
retweets ~ scale(neutral) + scale(length) + (1|event) 4 277363 

 

Table S5. The model specification, degrees of freedom, and AIC for each candidate model for the quote GLMM (conducted with all observations). 
 

 
 

Figure S7. A Q-Q plot (left) and a standardized residual plot (right) for the quote analysis GLMM, constructed using the DHARMa package in R 
(Hartig, 2020). The model appears to be a good fit, but there is a low level of significant outliers among residuals (outliers = 0.77%, p < 0.0001), and a 
Kolmogorov-Smirnov test indicates that the residuals do significantly deviate from uniformity (p < 0.0001). Based on a visual inspection of the Q-Q 
plot, and the fact that the creator of the DHARMa package has suggested that slight departures from uniformity can be significant when sample sizes 
are extremely high7, we conclude that the model is a good fit to the data. We did not conduct a dispersion test for the quote analysis GLMM, as they 
are unreliable for logistic models with binary outcomes8. 

 
7 https://github.com/florianhartig/DHARMa/issues/181 
8 https://github.com/florianhartig/DHARMa/issues/79 


